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 ABSTRACT 

The relationship between climate and malaria incidence is complex, with climate change 

influencing the epidemiological patterns of malaria in different regions. Understanding the nature 

of this relationship is essential for effective malaria programming, especially in the context of 

changing climate conditions. Modeling the relationship between climate factors and malaria 

incidence can help guide malaria control interventions based on current and projected climate data. 

It also serves as a basis for establishing malaria early warning systems to aid resource planning. 

This study aimed to investigate the relationship between climate factors, account for delayed 

climate effects, and evaluate the impact of indoor residue spray (IRS) intervention on malaria 

incidence. Monthly malaria incidence data were obtained from the national malaria control 

program, while climate data were collected from the Department of Meteorological Services and 

Climate Change in Mangochi district, Malawi. Two methods were employed: a distributed lag 

non-linear model to examine the nature of the relationship between climate variables and malaria 

incidence, and segmented regression to assess the impact of the IRS intervention while accounting 

for lagged climate effects and seasonal trends. The results revealed an immediate peak in malaria 

risk following extreme weather conditions, highlighting the importance of short-term effects of 

climate. The risk of malaria immediately doubles with extreme rains and humidity compared to 

average weather conditions. Notably, an immediate peak in malaria incidence was observed 

following exposure to all climatic factors, and the effects continued to manifest for up to three 

months (0-to-2-month lag). This suggests that previous climate conditions play a critical role in 

predicting current and future malaria incidence. In conclusion, the findings highlight the 

importance of short lags and the potential for immediate outbreaks following exposure to climatic 

factors. Incorporating these findings into malaria programming and control efforts can enhance the 

effectiveness of interventions and contribute to the development of proactive strategies to reduce 

the burden of malaria in the context of a changing climate.  
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CHAPTER  1 

INTRODUCTION 

1.1. Introduction 

This chapter provides a concise overview of the malaria burden in Malawi, including an 

examination of the historical trend. It also summarizes the national strategic plan and highlights 

the key interventions implemented to mitigate malaria incidence in the country. The chapter delves 

into a comprehensive explanation of the malaria transmission mechanism and explores the role of 

climate in shaping the dynamics of malaria transmission. Lastly, it articulates the problem 

statement, outlines the research objectives, and underscores the significance of this study in the 

context of malaria control efforts. 

 

1.2. Background  

In Malawi, malaria is endemic and all population is at risk and therefore affects large number of 

people. It continues to be a major public health problem, accounting for 20% of all outpatient visits 

in all age groups (HMIS, 2020).  Malawi accounts for 2% of malaria cases worldwide and is among 

the top 15 countries with a high malaria burden (Chilanga, Delphine, Heather, & Claudia, 2020). 

In 2020 alone the country registered 6.9 million cases both confirmed and presumed (99.6% and 

0.3% respectively) reported from health facilities and community case management program. 

Malawi has seen no major changes in malaria trend between 2014 and 2020 from 397 per 1000 

population in 2014 to 385 per 1000 population in 2020.   

Malaria burden is high among under-5 populations who are prone to severe malaria infection 

because they lack acquired immunity (Malawi Government, 2017).  According to malaria indicator 

survey 2017, prevalence of malaria among under-5 populations has slightly declined from 33% in 

2014 to 27% in 2017, the last malaria indicator survey was conducted in 2017. Vulnerable 

populations to malaria also include pregnant women and those living in areas that are prone to 

natural disasters, including floods and earth tremors. Populations living in hard-to-reach areas - 
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defined as more than 5km from the nearest health facility or limited to health services by 

geographical barriers - are also vulnerable (Malawi Government, 2017).   

Malaria continues to be public health burden and has caused 15% of all deaths in public health 

facilities in the year 2020 (HMIS, 2020).  According to health management information system 

(HMIS), malaria mortality rate has declined from 28 per 100,000 populations in 2014 to 13 per 

100,000 populations in 2020.  

Transmission is perennial in most areas and peaks after the start of the rainy season which begins 

in November/December, lasting through March/April. Malaria transmission intensity and risk of 

infection varies across the country and is highest in areas with high temperatures, rainfall and 

humidity, particularly along the low-lying lakeshore and Shire river valley areas and is lower, 

along the highland areas (Government of Malawi, 2020).  

The Ministry of Health in Malawi, through national malaria control programme, aims at 

eliminating malaria by 2030. The overall goal of malaria strategic plan 2017 – 2022 was to reduce 

malaria incidence from 386 per 1000 population in 2015 to 193 per 1000 population by 2022 and 

malaria deaths by at least 50% of 2015 levels by 2022, (Government of Malawi, 2020). Key 

interventions include: Indoor Residual Spraying (IRS), Long Lasting Insecticide Treated Nets 

mass distribution campaign and malaria vaccination targeting specific population periodically. 

Other interventions implemented routinely are net distribution targeting pregnant women and 

newborn babies and intermittent prevention and treatment in pregnancy (IPTp) administration to 

pregnant women. Home remedies to control malaria are also widely practiced at individual level 

such as use of mosquito repellants and small-scale indoor residue spray (IRS). Lumefantrine-

Artemether (LA) is the first-line treatment for uncomplicated malaria while Artesunate-

Amodiaquine (ASAQ) as the second-line treatment for uncomplicated malaria (Government of 

Malawi, 2020).  

1.3. Malaria Transmission Mechanism and Climate 

Malaria burden is a result of interaction among three determinants namely host (age, sex and 

immunity), environment (climate and altitude) and parasite/agent (antigenicity, strain, resistance 

and behaviour) (Government of Malawi, 2020).  The host component is shaped by several factors 

including genetic and acquired immunity, behavior, demographics, culture, socioeconomic 



3 
 

characteristics, and politics (Marcia & Castro, 2017). In highly malaria endemic areas like Malawi, 

children are mostly non-immune compared to adults which influence transmission intensity of 

malaria in children (Kazembe, Kleinschmidt, Holtz, & Sharp, 2006).  The environmental 

component depends both on the natural environment—temperature, humidity, rainfall, soil quality, 

elevation/slope, land cover, hydrography, presence of natural enemies of mosquitoes and larvae, 

and natural disasters— and the human-made environment—land use, land change, deforestation, 

housing type, infrastructure (water, sanitation, and waste collection), urbanization, development 

projects (e.g., roads, railways, dams, irrigation, mining, resettlement projects, and oil pipelines), 

and disasters facilitated by human-made changes. The vector is shaped by the type of Anopheles 

species and associated feeding, resting, biting, and breeding behavior, flight range, vectorial 

capacity, mortality and reproduction rate, mosquito resistance to insecticides, and larval resistance 

to larvicides (Marcia & Castro, 2017). 

Malaria is a parasitic disease caused by Plasmodium species (spp.), unicellular protozoan 

organisms in the phylum of Apicomplexa (Xin, Cui, & Deirdre, 2020). The species that infect 

humans include Plasmodium falciparum, P. vivax, P. malariae, P. knowlesi, and P. ovale, with P. 

ovale recently recognized as two subspecies called Plasmodium ovale curtisi (classic type) and 

Plasmodium ovale wallikeri (Sutherland, 2010). Whereas, P. vivax is the most widespread species, 

P. falciparum is the deadliest to humans. 

It is often referred to as a climate-dependent disease, which is primarily because certain climatic 

conditions are needed for the complete maturation of sporozoites in mosquitoes (Varvara, Natalia, 

Mikhail, & Mikhail, 2019).  Varvara et al (2019) reported that Plasmodium vivax requires lower 

temperatures for its development in the vector than other human malaria species. Climate 

conditions affects the bionomics of Anopheles mosquitoes, such as the speed of development of 

the aquatic stages (which depends on the temperature of the place of breeding), the speed of blood 

digestion (which depends on the temperature of the resting place), and their survival in general.  

Climatic changes in the past have greatly affected the distribution of malaria and likely modified 

malaria geography (Phillippe & Myriam, 1995). Phillippe et al (1995) highlighted that making 

predictions regarding the geographical extent and intensity of malaria is difficult and the 

relationship between malaria and climate is complex. According to Phillippe et al (1995), 

temperature affects the survival of the parasite only during its life-cycle in the Anopheles vector 
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and modifies the vectorial capacity of the Anopheles. Optimal values of temperature, ranging 

between 22 and 300C, lengthen the life-span of the mosquitos and increase the frequency of blood 

meals taken by the females, to up to one meal every 48 hours. Higher temperatures also shorten 

the aquatic life cycle of the mosquitos from 20 to 7 days and reduce the time between emergence 

and oviposition, as well as the time between successive ovipositions.  

Phillippe et al (1995) also indicated that rainfall generally means new opportunistic breeding 

places. Nonetheless, rainfall can also destroy existing breeding places; heavy rains can change 

breeding pools into streams, impede the development of mosquito eggs or larvae, or simply flush 

the eggs or larvae out of the pools. Conversely, exceptional drought conditions can turn streams 

into pools. The appearance of such opportunistic mosquito breeding sites sometimes precedes 

epidemics. The interaction between rainfall, evaporation, runoff, and temperature modulates the 

ambient-air humidity, which in turn affects the survival and activity of Anopheles mosquitos. To 

survive, they need at least 50% or 60% relative humidity. Higher levels lengthen the life-span of 

the mosquitos and enable them to infect more people.  

 Although Phillippe et al (1995) described a range of favorable conditions, the actual relation is 

not the same due to mediating/moderating factors, as such the relation of climate and malaria may 

vary from place to place (Phillippe & Myriam, 1995). As also observed by Chuang et al (2017), 

different administrative regions with varying vulnerability to climate show varying effects 

prompting the need to localize investigation to specific places with varying climate vulnerability 

(Chuang & Ting, 2017). Lisbeth et al (2017), in a study conducted in Guna Yala also called for 

further studies about weather impacts on malaria vector ecology, as well as the association of 

malaria vectors while paying attention to different socio-economic conditions such as poverty and 

cultural differences (Lisbeth, Jose, Chystrie, & Milagros, 2017). 

Malawi’s climate is subtropical with the three distinct seasons: rainy season extending from 

November to April, and the dry season from May to mid-August with temperatures at night 

reaching as low as 10-14o C and the hot season from between mid-August and November (The 

INFORM Project, 2014). Generally, the highlands are cooler and wetter while the low-lying 

regions are hotter and more humid.  
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1.4. Problem Statement 

Malaria is indirectly associated with natural risk factors such as rainfall pattern, temperature and 

humidity which influence spread and transmission of malaria parasite (Ayansina, Isioma, 

Consolato, & Oluwatoyin, 2020). High rainfall increases mosquito breeding sites and therefore 

increasing transmission of malaria parasites among individuals. In the same way other risk factors; 

temperature and humidity also affect malaria transmission by regulating the rate of development 

of the mosquito larvae which influences mosquito survival rates (Gunda, Chimbar, Shamu, 

Sartorius, & Mukaratin, 2017). The link between climate variability and vector-borne diseases has 

also been established in a study by Gunda et al (2017) investigating association between malaria 

incidence and climate variables in rural Gwanda in Zimbabwe. Climate variability has the potential 

to either work for or against efforts to control the disease. (Gunda, Chimbar, Shamu, Sartorius, & 

Mukaratin, 2017).   

An understanding of how malaria incidences vary as a result of climate variability (present and 

recent past) is important for planning for future malaria control programmes (Gunda, Chimbar, 

Shamu, Sartorius, & Mukaratin, 2017). It allows for the identification of the most suitable timing 

for implementing malaria interventions, considering the impact of past climate conditions. This 

understanding can serve as a guiding tool for program implementers, enabling them to incorporate 

past climate experiences into their decision-making process and enhance the effectiveness of 

malaria control initiatives. Also, exploring the connection between malaria incidence and lagged 

climatic conditions has the potential to contribute significantly to the development of malaria early 

warning systems.  

Investigating the impact of past climate experiences on malaria transmission is also crucial for 

understanding local epidemiological shifts, some of which can be attributed to climate change. 

Future climate projections indicate a general warming trend, particularly in southern Malawi and 

over the lake (Vincent & Katharine, 2020). However, different climate models simulate diverse 

patterns of rainfall, leading to varying predictions. By 2030, the anticipated changes in annual 

mean rainfall range from a modest -8% decrease to a +20% increase. These changes become more 

pronounced by the 2070s, with projected ranges of -17% decrease to +27% increase. Conversely, 

there is a strong consensus among climate models regarding rising temperatures in Malawi. 
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Projections indicate a temperature increase of 0.5 to 1.5°C by the 2040s and a more substantial 

warming of 4 to 4.3°C by the year 2090 (Vincent & Katharine, 2020). 

The changing climatic conditions highlight the importance of considering the complex interactions 

between climate factors and malaria transmission dynamics. Understanding the local climate 

patterns and their potential impact on malaria is also crucial for developing effective strategies to 

mitigate the disease and adapt to future climate challenges. 

In addition to the aforementioned points, it is worth emphasizing that the statistical methods 

commonly employed in previous studies often assume a linear relationship between climate 

variables and malaria incidence. However, it has been reported in numerous studies that non-linear 

relationships exist in this context. Therefore, this study addressed this limitation by applying 

methods which captures non-linear relationship more accurately. 

Furthermore, this research incorporated methods to model the delayed effects of climate on malaria 

transmission. Understanding the time lag between climate factors and their impact on malaria 

incidence is essential to comprehensively assess the relationship between the two variables. By 

applying appropriate methodologies to account for delayed climate effects, the study provides a 

more comprehensive and accurate analysis of the influence of climate on malaria transmission in 

Mangochi district.  

Lastly, the study assessed the impact of indoor residue spray (IRS) intervention while accounting 

for the lagged and non-linear effects of climate in Mangochi, Malawi. Mangochi district is one of 

the areas burdened by high malaria cases, as highlighted in the Malawi Malaria Strategic Plan 

2017-2022. Therefore, it serves as an ideal location to examine the interrelationship between 

climate change and malaria. 

1.5. Research Objectives 

The primary objective of this study was to model the impact of IRS malaria intervention while 

accounting for lagged and non-linear effects of climate in Mangochi, Malawi.  

1.5.1. Specific Objectives 

1.5.1.1. To model lagged and nonlinear effects of climate factors on malaria 

in Mangochi, Malawi. 
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1.5.1.2. To evaluate impact of indoor residue spray (IRS) malaria 

intervention while accounting for lagged effects of climate factors in Mangochi, Malawi.  

1.6. Significance of the study 

According to the Malawi Malaria Strategic Plan 2017-2022, the country aims to significantly 

reduce malaria incidence and deaths. The goal is to reduce malaria incidence by 50% from a 

baseline of 386 cases per 1000 population in 2016 to 193 cases per 1000 population, and reduce 

malaria deaths by 50% from 23 deaths per 100,000 population to 12 deaths per 100,000 population 

by 2022. To achieve this, Malawi aims to have at least 90% of the population utilizing one or more 

malaria preventative interventions. The national malaria control program will prioritize the 

implementation of quality indoor residual spraying (IRS) in selected epidemiological areas, guided 

by international/WHO standards and local climate trends. The success of IRS depends on the 

proper timing of implementation, aligned with peak malaria periods. This study will help forecast 

malaria peak periods based on past climate experiences, providing guidance for selecting the 

optimal implementation period for IRS to maximize its impact in reducing malaria transmission  

The study is also justified by the need to develop action plans for malaria epidemic prevention and 

response in Malawi, particularly considering the increasing malaria incidence due to climate 

change (Government of Malawi, 2020). A malaria early warning system (MEWS) is seen as a 

promising tool to reduce the burden of malaria by accounting for the complex malaria-climate 

dynamics (Yoonhee et al., 2019). This study aims to contribute to the field by modeling the lagged 

effects of climate on malaria, which can be used to forecast future malaria epidemics based on past 

climate experiences. Enhancing the MEWS by incorporating climate-related epidemics is crucial 

for preventing malaria-related deaths during epidemics  

This study aligns with Sustainable Development Goal (SDG) number 3, which aims to achieve 

good health and well-being for all. Target 3.B under this goal specifically focuses on improving 

early warning systems for global health risks. By developing an improved early warning system 

for malaria epidemics in Malawi, based on past climate experiences, this study contributes to the 

achievement of SDG 3.0. The enhanced early warning system will support the program's response 

to future malaria epidemics by utilizing climate data, ultimately helping to prevent avoidable 

deaths during disease outbreaks. 
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1.7. Organization of Thesis 

The study is structured in a systematic manner to address the research objectives. Chapter 1 serves 

as an introduction, providing an overview of the study objectives. The subsequent chapters, namely 

Chapter 2 and Chapter 3, focus on specific aspects/objectives of the investigation. Each chapter 

includes a literature review, theoretical framework, materials and methods, results and discussion, 

and a conclusion specific to each objective. Theoretical framework outlined in chapter 2 also 

applies to chapter 3. 

In Chapter 2, the primary focus is to model the lagged and nonlinear effects of climate factors on 

malaria in Mangochi, Malawi. This chapter delves into the intricate relationship between climate 

variables and malaria transmission dynamics, considering both the time delay and non-linear 

associations. By incorporating these factors into the modeling process, a more comprehensive 

understanding of the influence of climate on malaria incidence is achieved. 

Chapter 3 takes the analysis further by incorporating lagged climate conditions when evaluating 

the impact of interventions on malaria incidence. By accounting for the time lag between climate 

factors and their effect on malaria transmission, this chapter provides a more accurate assessment 

of the benefits derived from interventions. The inclusion of lagged climate effects in the evaluation 

process enhances our understanding of the true impact of interventions and their effectiveness in 

reducing malaria cases in the specific context of Mangochi, Malawi. 

Finally, Chapter 4 serves as the concluding chapter, providing an overall summary and conclusion 

that encompasses all the objectives examined throughout the thesis. This chapter synthesizes the 

findings from the preceding chapters, highlighting the key insights gained from the investigation 

and their implications for malaria control strategies.  
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CHAPTER 2 

MODELLING LAGGED AND NONLINEAR EFFECTS OF CLIMATE FACTORS ON 

MALARIA IN MANGOCHI, MALAWI 

2.1. Introduction  

There is well documented evidence that malaria is influenced by climate factors which impact on 

vector dynamics hence influencing spread and transmission of malaria parasite among individuals 

(Lisbeth, Jose, Chystrie, & Milagros, 2017). In Malawi, malaria transmission is highest during 

rainy season (November to April) when there is also an increase in malaria vector breeding sites 

(Government of Malawi, 2020).  Low lying areas have hot temperatures which is more favorable 

for mosquito breeding hence transmission is also highest in these areas. However due to climate 

change there is an observation that even highlands are experiencing rise of malaria cases attributed 

to increasing temperatures in highland areas that also favors malaria vector breeding.  

Phillippe et al (1995) indicated that potential transmission of malaria is controlled by climatic 

factors such as temperature, humidity, and rainfall, which regulate the biology of development of 

both mosquito and parasite (Phillippe & Myriam, 1995).  Ogden et al (2017) also emphasized the 

global concern of impacts of climate change on the ‘big two diseases’: malaria and dengue, which 

have now perhaps become the ‘big five’ of malaria, dengue, yellow fever, chikungunya and Zika 

(Ogden, 2017). According to the paper, the big five diseases are intrinsically sensitive to weather 

and climate (Ogden, 2017).  

Many studies have established presence of non-linear relationship between climate variables and 

malaria risk in other countries (Gunda, Chimbar, Shamu, Sartorius, & Mukaratin, 2017).  Gunda 

et al (2017) identified that administrative regions with varying vulnerability to climate show 

varying effects prompting the need to localize investigation of specific places with varying climate 

vulnerability.  Lisbeth et al (2017) called for further studies about weather impacts on malaria 

vector ecology, as well as the association of malaria vectors with Gunas paying attention to their 

socio-economic conditions of poverty and cultural differences as an ethnic minority (Lisbeth, Jose, 
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Chystrie, & Milagros, 2017). The primary focus in this chapter is to model the lagged and nonlinear 

effects of climate factors on malaria in Mangochi, Malawi. 

2.2. Literature review 

Malaria, according to the World Health Organization, is one of the most serious and complex 

health problems facing humanity in the 20th century. In the past, climatic changes have greatly 

affected its geography (Phillippe & Myriam, 1995). Its seriousness and complexity are therefore 

likely to be compounded by an anthropogenic greenhouse effect. Phillippe et al (1995) indicated 

that the intensity and the extent of malaria potential transmission significantly change under the 

climate change scenarios generated by five atmospheric general circulation models. All five 

simulations revealed an increase in seasonal malaria at the expense of perennial malaria which is 

cause for great concern. Indeed, seasonal malaria is most likely to lead to epidemics among 

unprepared or nonimmune populations. Moreover, climate change may trigger massive migrations 

of environmental refugees. Such population movements would likely put national and international 

health infrastructures under severe stress. Today, malaria is a developing country issue but could 

spread to higher latitudes. The results obtained with Malaria Potential Occurrence Zone (MOZ) 

model suggest that malaria could become a public health problem for developed countries within 

decades. 

There has been much debate as to whether or not climate change will have, or has had, any 

significant effect on risk from vector-borne diseases (Ogden, 2017). The debate on the former has 

focused on the degree to which occurrence and levels of risk of vector-borne diseases are 

determined by climate-dependent or independent factors, while the debate on the latter has focused 

on whether changes in disease incidence are due to climate at all, and/or are attributable to recent 

climate change. Ogden et al (2017) reviewed possible effects of climate change on vector-borne 

diseases, methods used to predict these effects and the evidence to date of changes in vector-borne 

disease risks that can be attributed to recent climate change.  The findings are that predictions have 

both over- and underestimated the effects of climate change. Mostly under-estimations of effects 

are due to a focus only on direct effects of climate on disease ecology while more distal effects on 

society’s capacity to control and prevent vector-borne disease are ignored. It also established 

increasing evidence for possible impacts of recent climate change on some vector-borne diseases 
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but for the most part, observed data series are too short (or non-existent), and impacts of climate-

independent factors too great, to confidently attribute changing risk to climate change. 

Risk assessment regarding the distribution of malaria vectors and environmental variables 

underpinning their distribution under changing climates is crucial towards malaria control and 

eradication (Godwin, Kayode, & Olakunle, 2019). Godwin et al (2019) estimated the potential 

future distribution of major transmitters of malaria in Nigeria—Anopheles gambiae sensu lato and 

its siblings: Anopheles gambie sensu stricto, and Anopheles arabiensis under low and high 

emissions scenarios. The study established higher magnitude of change in species prevalence 

predicted for the later part of the 21st century under high emission scenario, driven mainly by 

increasing and fluctuating temperature, alongside longer seasonal tropical rainfall accompanied by 

drier phases and inherent influence of rapid land use change, may lead to more significant increase 

in malaria burden when compared with other periods and scenarios during the century; especially 

in Humid forest, Derived savanna, Sahel and Sudan savannas. 

Cyril et al (2018) also indicated that climate change is one of the greatest threats to human health 

in the 21st century (Cyril, Marie, & Annie, 2018). This is because it directly impacts on health 

through climatic extremes, air quality, sea-level rise, and multifaceted influences on food 

production systems and water resources. It also affects infectious diseases, which have played a 

significant role in human history, impacting the rise and fall of civilizations and facilitating the 

conquest of new territories. The paper by Cyril et al (2018) highlighted significant regional 

changes in vector and pathogen distribution reported in temperate, peri-Arctic, Arctic, and tropical 

highland regions during recent decades, changes that have been anticipated by scientists 

worldwide. The review established that further future changes are likely if we fail to mitigate and 

adapt to climate change. Many key factors affect the spread and severity of human diseases, 

including mobility of people, animals, and goods; control measures in place; availability of 

effective drugs; quality of public health services; human behavior; and political stability and 

conflicts. With drug and insecticide resistance on the rise, significant funding and research efforts 

must be maintained to continue the battle against existing and emerging diseases, particularly those 

that are vector borne 

Life cycles of malaria mosquitoes and parasites are strongly affected by climate factors such as 

temperature and precipitation (Jung Eun Kim, 2018). The paper by Jung et al (2018) indicates that 
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optimal temperature for malaria transmission is around 25°C, which suggests that malaria 

transmission may occur predominantly between summer and early fall in Korea (Jung Eun Kim, 

2018).  In areas where climate has been gradually shifting may increase the risk of massive malaria 

outbreaks. Jung et al (2018) further emphasized the importance of investigating potential effect of 

climate change on P. vivax malaria transmission through a modeling study. 

Rainfall and temperature are considered the main weather factors that highly determine malaria 

epidemics (Yoonhee, Ratnam, Takeshi, Yushi, & Swadhin, 2019). Yoonhee et al (2019) noted that 

high rainfall increases the number of breeding sites for mosquitoes and leads to increases in malaria 

transmission. He also acknowledged that some studies, however, have reported that intense rainfall 

could flush early-stage larvae and shrink mosquito populations in the short term. The study further 

reported that high temperatures increase the chance of transmission by shortening the duration of 

parasite growth in mosquitoes. Temperature changes also influence the development, 

reproduction, survival, and biting rate of mosquitoes (Yoonhee, Ratnam, Takeshi, Yushi, & 

Swadhin, 2019). 

Soma et al (2019) reported major reasons for the persistence of malaria is the extensive geographic 

and climatic diversity of the country, which supports ideal ecological conditions for sustaining the 

parasites and their vectors (Soma, Vinay, Poonam, & Ramesh, 2019).  The major climatic 

determinants of malaria are temperature, rainfall and humidity. The paper further noted that impact 

of climate change is not uniform around the globe: Some places may become warmer and drier, 

while others warmer and wetter. Hence, the threat of climate change is expected to have a profound 

effect on the mosquito’s longevity, development of malaria parasites in the vectors, and 

consequently opening the windows of malaria transmission particularly in areas which are free due 

to temperature constrains. In other words, global climate change is likely to alter the spatial and 

temporal distribution of malaria. It further states that climate change will increase the opportunities 

for malaria transmission in traditionally non-malarious areas, and make it difficult to control in 

traditionally malarious areas due to an alteration in their growth cycle and transmission seasons.  

The study reported that although future repercussions of climate change on malaria transmission 

at the global level have already been explored; however, such evidences are limited in other areas.  

A paper by Ayansina et al (2020) also mentioned the role of climatic variability and seasonality as 

significant in the spatiotemporal distribution of diseases (Ayansina, Isioma, Consolato, & 
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Oluwatoyin, 2020). The paper showed that the occurrence and spatial distribution of malaria are 

sensitive to the seasonality of climatic factors in most African countries, and other parts of the 

world with significant perinatal morbidity and mortality. This is because disease vectors also 

depend on suitable habitats to breed, which in turn depends heavily on climatic conditions and for 

understanding the nature of some illness. The malaria and meningitis (MM) transmission is highly 

seasonal due to climatic conditions; these occurrences are much more frequent in recent times due 

to climate change. The paper further states that climate and health are indistinctly interconnected, 

and this is the same for infectious diseases. Climate change is likely to increase malaria and 

meningitis incidence as the future environment might become more suitable for malaria 

transmission in many tropical highlands. It also reported a corresponding 0.90% increase in the 

number of malaria cases to each 1 °C temperature increase.  Hertig et al (2019) also found that the 

occurrence of vector competent Anopheles species and favorable climatic conditions 

autochthonous malaria cases may re-emerge in countries where malaria was previously eradicated 

(Hertig, 2019).  

Although malaria is one of the greatest historical killers of mankind, its range is limited by climate 

to the warmer regions of the globe (Steffen & Abba, 2018).  The paper by Steffen et al (2018) 

further mentioned that anthropogenic global warming (and climate change more broadly) now 

threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium 

malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, 

while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local 

hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus 

been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria 

transmission dynamics, but have reached somewhat disparate conclusions as to optimum 

temperatures for transmission, and the possible effect of increasing temperatures upon (potential) 

malaria distribution, with some projecting a large increase in the area at risk for malaria, but others 

predicting primarily a shift in the disease’s geographic range. The paper also indicated that both 

global and local environmental changes drove the initial emergence of P. falciparum as a major 

human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep 

history through the present.  
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Florence et al (2019) also highlighted that climate variables that directly influence vector-borne 

diseases’ ecosystems are mainly temperature and rainfall (Florence & John, 2019). This is not only 

because the vectors bionomics are strongly dependent upon these variables, but also because most 

of the elements of the systems are impacted, such as the host behavior and development and the 

pathogen amplification. The paper also established that impact of the climate change on the 

transmission patterns of these diseases is not easily understood, since many confounding factors 

are acting together. Consequently, knowledge of these impacts is often based on hypothesis 

derived from mathematical models. Nevertheless, some direct evidences can be found for several 

vector-borne diseases.  Evidences of the impact of climate change are available for malaria, 

arbovirus diseases such as dengue, and many other parasitic and viral diseases such as Rift Valley 

Fever, Japanese encephalitis, human African trypanosomiasis and leishmaniasis. The effect of 

temperature and rainfall change as well as extreme events, were found to be the main cause for 

outbreaks and are alarming the global community. Among the main driving factors, climate 

strongly influences the geographical distribution of insect vectors, which is rapidly changing due 

to climate change. Further, in both models and direct evidences, climate change is seen to be 

affecting vector-borne diseases more strikingly in fringe of different climatic areas often in the 

border of transmission zones, which were once free of these diseases with human populations less 

immune and more receptive. The impact of climate change is also more devastating because of the 

unpreparedness of Public Health systems to provide adequate response to the events, even when 

climatic warning is available. Although evidences are strong at the regional and local levels, the 

studies on impact of climate change on vector-borne diseases and health are producing 

contradictory results at the global level.  

Yen et al (2020) explained that changes in the Earth’s climate and weather continue to impact the 

planet’s ecosystems, including the interface of infectious disease agents with their hosts and 

vectors (Yeh, Fair, Smith, & Torres, 2020).  Environmental disasters, natural and human-made 

activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently, 

changes in habitat, displaced populations, and environmental stresses that affect the survival of 

species are amplified over time. The recurrence and spread of vector-borne (e.g., mosquito, tick, 

aphid) human, animal, and plant pathogens to new geographic locations are also influenced by 

climate change. The distribution and range of humans, agricultural animals and plants, wildlife 

and native plants, as well as vectors, parasites, and microbes that cause neglected diseases of the 
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tropics as well as other global regions are also impacted. In addition, genomic sequencing can now 

be applied to detect signatures of infectious pathogens as they move into new regions. Molecular 

detection assays complement metagenomic sequencing to help us understand the microbial 

community found within the microbiomes of hosts and vectors, and help us uncover mechanistic 

relationships between climate variability and pathogen transmission. The understanding of, and 

responses to, such complex dynamics and their impacts can be enhanced through effective, multi-

sectoral One Health engagement coupled with applications of both traditional and novel 

technologies. Concerted efforts are needed to further harness and leverage technology that can 

identify and track these impacts of climate changes in order to mitigate and adapt to their effects. 

In a study conducted by Lisbeth et al (2017) showed that EL Niño Southern Oscillation (ENSO), 

rainfall and Normalized Difference Vegetation Index (NDVI) were associated with the number of 

malaria cases in Guna Yala (Lisbeth, Jose, Chystrie, & Milagros, 2017). The study established 

high vulnerability of Guna populations to malaria and also that malaria infection is sensitive to 

climate change. They further called for further studies about weather impacts on malaria vector 

ecology, as well as the association of malaria vectors with Gunas paying attention to their socio-

economic conditions of poverty and cultural differences as an ethnic minority. 

Chuang et al (2017) in Swaziland investigated effects of climate to malaria in four administrative 

regions Lubombo, Hhohho, Manzini and Shiselweni (Chuang & Ting, 2017).  This study indicated 

that climate conditions were more important in the Hhohho and Lubombo administrative regions, 

implying that residents in these areas are at higher risk of infection when temperatures and 

precipitation are suitable for malaria transmission. This clearly shows that places with different 

vulnerability to climate respond differently hence the need to localize and investigate area specific 

estimates of climate factors. 

Non-linear relationship between climate factors and malaria incidence has been found in some 

studies. In Zimbabwe, Gunda et al (2017) investigated Malaria incidence trends and their 

association with climatic variables in rural Gwanda (Gunda, Chimbar, Shamu, Sartorius, & 

Mukaratin, 2017). The results showed significant association between malaria incidence and the 

climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only 

precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly 
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associated with incidence at specific lag periods. DLNM results suggest a key risk period in current 

month, based on key climatic conditions in the 1–4-month period prior. 

In a paper conducted in republic of Korea, Jae et al (2012) suggested that malaria transmission in 

temperate areas is highly dependent on climate factors (Jae, Hae, & Young, 2012). In addition, 

lagged estimates of the effect of rainfall on malaria are consistent with the time necessary for 

mosquito development and P. vivax incubation. 

Yoonhee et al (2019) proposed methods for malaria forecasting based on different modeling 

approaches such as statistical modeling (e.g., generalized linear model (GLM) and autoregressive 

integrated moving average (ARIMA) time series model), mathematical modeling (e.g., 

susceptible-exposed-infected-recovered (SEIR) model), and machine learning methods (e.g., 

neural network) (Yoonhee, Ratnam, Takeshi, Yushi, & Swadhin, 2019). However, the study 

acknowledged that no one method has been a gold standard because each method has different 

modeling assumptions and the optimal choice of the method depends upon the characteristics of a 

study population. Yoonhee et al (2019) applied a flexible statistical modeling approach, a GLM 

with a distributed lag nonlinear structure, to understand the complexity of nonlinear and delayed 

malaria-weather associations and develop a weather-based malaria prediction model accordingly.  

In this chapter, GLM with a distributed lag nonlinear structure is applied to model the nature of 

relationship between climate variables and malaria incidence in Mangochi, Malawi. 

2.3. Conceptual framework 

2.3.1. Generalized Linear Model  

Malaria has been modeled using various statistical methods in the literature and significant malaria 

predictors (particularly climatic factors) have been identified in a variety of settings 

(Mukhopadhyay, Tiwari, Shetty, Gogtay, & Thatte, 2019). The statistical methods include linear 

regression and generalized linear regression with trend, seasonal parameters and weather 

covariates. The conditional distribution of malaria counts given the past, is assumed to follow a 

distribution from the exponential family (usually taken to be a Poisson/negative binomial 

distribution). Due to the presence of high dispersion in the data, a negative binomial distribution 

gives a better fit. This section reviews generalized linear modeling for time series data. 
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Generalized linear models (GLM) extend the concept of the well understood linear regression 

model. The linear model assumes that the conditional expectation of Y (the dependent or response 

variable) is equal to a linear combination 𝑋𝑇β which could also be written as Y=𝑋𝑇β+ε. 

Unfortunately, the restriction to linearity cannot take into account a variety of practical situations. 

For example, a continuous distribution of the error term implies that the response Y must have a 

continuous distribution as well. Hence, the linear regression model may fail when dealing with 

binary Y or with counts data. 

GLM methodology is a specific class of nonlinear models for a general approach to nonlinear 

regression which assumes that the distribution of Y is a member of the exponential family. The 

exponential family covers a large number of distributions for example discrete distributions as the 

Bernoulli, binomial and Poisson which can handle binary and count data or continuous 

distributions as the normal, Gamma or Inverse Gaussian distribution. 

A distribution is a member of the exponential family if its probability mass function (if Y discrete) 

or its density function (if Y continuous) has the following form. 

𝑓(𝑦, 𝜃, ∅) = exp (
yθ − b(θ)

a(∅)
) + c(y, ∅) 

Equation  1 

The functions a(•), b(•) and c(•) varies for different Y distributions and the parameter of interest is 

θ, which is also called the canonical parameter (McCullagh and Nelder,1989). The additional 

parameter ∅, is only relevant for some of the distributions, and is considered as nuisance parameter. 

2.3.2. Structure of GLM 

A generalized linear model (or GLM) consists of three components: 

A random component, specifying the conditional distribution of the response variable, Yi 

(for the ith of 𝑛 independently sampled observations), given the values of the explanatory 

variables in the model 𝑓(𝑦, 𝜃, ∅) = exp (
yθ−b(θ)

a(∅)
) + c(y, ∅), where ∅ is a dispersion 

parameter and functions b(), a() and c() are known. 
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A linear predictor, that is a linear function of regressors ni = α + B1Xi1+B2Xi2 + B𝑘Xik 

which may include quantitative explanatory variables, transformations of quantitative 

explanatory variables, polynomial regressors, dummy regressors, interactions, and so on.  

Link Function, the link function which links the response variable, 𝑢𝑖 = E(Yi), to the linear 

predictor: g(μi) = ni = α + B1Xi1+B2Xi2 + B𝑘Xik 

2.3.3. GLM for Time Series  

The ideas from generalized linear models are used in modeling time series data which is extended 

to handle time series where the data are dependent and the covariates are time dependent. Partial 

likelihood function transports main inferential features appropriate for independent data to time 

series which is not necessarily stationary. An essential component of partial likelihood is that it 

allows for temporal or sequential conditional inference with respect to a filtration generated by all 

that is known to the observer at the time of observation (Benjamin & Konstantinos, 2002). This 

enables very flexible conditional inference that can easily accommodate autoregressive 

components, functions of past covariates, and all sorts of interactions among covariates. 

2.3.4. Parameter estimation  

The likelihood is defined as the joint distribution of the data as a function of the unknown 

parameters. When the data are independent or when the dependence in the data is limited, the 

likelihood is readily available under appropriate assumptions on the factors in terms of which the 

joint distribution is expressed. In practice, however, things tend to be more complicated as the 

nature of dependence is not always known or even understood and consequently the likelihood is 

not within an easy reach (Benjamin & Konstantinos, 2002). This gives the impetus for seeking 

suitable modifications usually by means of conditioning. Partial likelihood is an example of such 

a modification. 

If Y be a time series {yt}, t = 1,. . . , N, with a joint density  y∅ = (y1 … ym) parametrized by a 

vector parameter ∅. In addition, if some auxiliary information (AI) is known throughout the period 

of observation. Then the likelihood is a function of ∅ defined by the equation 
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f∅(y1 … y1|AI) = f∅(y1|AI) ∏ 𝑓∅(𝑦𝑡 𝑦1⁄ , 𝑦2 … , 𝑦𝑡−1, 𝐴𝐼)

N

t=2

 

Equation  2 

The main difficulty the above likelihood function is that quite generally, if no additional 

assumptions are made, as the series size N increases so does the size of ∅. Hence, instead of getting 

more and more information about a fixed set of parameters, we obtain information but about an 

increasing number of parameters, a fact which raises consistency as well as modeling problems 

(Benjamin & Konstantinos, 2002). This is rectified when the conditional dependence in the data is 

limited and the increased amount of information obtained by a growing time series size concerns 

a fixed set of parameters. The appropriate assumptions and modifications of the general likelihood 

above are called for to accommodate dependent time series data such as the notion of partial 

likelihood (Benjamin & Konstantinos, 2002). 

2.3.5. Partial likelihood function 

If  yi is a response time series with the corresponding p–dimensional covariate process, zt−1 =

(zt−1,1 … zt−1,P) then define Ft−1 = σ{Yt−1, Yt−2,..., Zt−1, Zt−2,...}. The conditional expectation of 

the response given the past is defined as 𝑈𝑡 = E[Yt−1,  | Ft−1,]. 

2.3.6. GLM for count data 

GLM for counts have as it’s random component the Poisson Distribution. Observations of 

dependent counts can in many cases be modeled successfully through the Poisson distribution. The 

conditional density of the Poisson distribution with mean ut can be written as. 

f(yt, θt, ∅/Ft−1) = exp (yt log ut − ut) - logyt
!) , t = 1,…,N,  

Equation  3 

where E(yt/Ft−1) = 𝑢𝑡, b(θ) = ut= exp (θt), v(ut)=ut, ∅ = 1 and wt=1,  

the conical link is given by g(ut) = θ(ut) = 𝒏t = Zt
′B. 

if Zt−1
′  = (1, Xt, Xt−1)′ then the link function becomes  

log( 𝑢𝑡) = 𝐵0 + 𝐵1𝑥1 + 𝐵2𝑌𝑡−2 
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with Xt standing for some covariate process, or a possible trend, or a possible seasonal component.  

2.3.7. Modeling Rates: Including an Offset in the Model 

Often the expected value of a response count 𝑌𝑖 is proportional to an index 𝑡𝑖. For instance, 𝑡𝑖 

might be an amount of time and/or a population size, such as in modeling crime counts. Or, it 

might be a spatial area, such as in modeling counts of a particular animal or plant species. Then 

the sample rate is 𝑌𝑖/𝑡𝑖, with expected value μ𝑖. With explanatory variables, a loglinear model for 

the expected rate has the form 

log(yi|ti) = ∑ BjXi,j

p

j=1

 

Equation  4 

Because log(yi|ti) = log( 𝑦𝑖) − log( 𝑡𝑖), the model makes the adjustment − log( 𝑡𝑖), to the log link 

of the mean.  This adjustment term is called an offset. The fit corresponds to using log( 𝑡𝑖), as an 

explanatory variable in the linear predictor for log( 𝑢𝑡) and forcing its coefficient to equal 1. For 

this model, the expected response count satisfies 

ui = 𝑡𝑖𝑒𝑥𝑝 (∑ BjXi,j

p

j=1

) 

Equation  5 

The mean has a proportionality constant for 𝑡𝑖  that depends on the values of the explanatory 

variables.  

2.3.8. Negative Binomial GLMS 

For the Poisson distribution, the variance equals the mean. In practice, count observations often 

exhibit variability exceeding that predicted by the Poisson. This phenomenon is called 

overdispersion. 
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2.3.9. Over dispersion for a Poisson GLM 

Common reason for overdispersion is heterogeneity: at fixed levels of the explanatory variables, 

the mean varies according to values of unobserved variables. Overdispersion is not an issue in 

ordinary linear models that assume normally distributed y, because that distribution has a separate 

variance parameter to describe variability. For Poisson and binomial distributions, however, the 

variance is a function of the mean.  

Overdispersion is common in the modeling of counts. Suppose the model for the mean has the 

correct link function and linear predictor, but the true response distribution has more variability 

than the Poisson. Then the ML estimators of model parameters assuming a Poisson response are 

still consistent, converging in probability to the parameter values, but standard errors are too small. 

Extensions of the Poisson GLM that have an extra parameter account better for overdispersion.  

2.3.10. Negative Binomial as a Gamma Mixture of Poissons 

A mixture model is a flexible way to account for overdispersion. At a fixed setting of the 

explanatory variables actually observed, given the mean 𝜆 , suppose the distribution of y is 

Poisson(𝜆 ), but 𝜆  itself varies because of unmeasured covariates. Let 𝜇  = E(𝜆 ). Then 

unconditionally, 

E(y) = E[E(y ∣ 𝜆 )] = E(𝜆 ) = 𝜇 , 

Equation  6 

var(y) = E[var(y ∣ 𝜆 )] + var[E(y ∣ 𝜆 )] = E(𝜆 ) + var(𝜆 ) = 𝜇  + var(𝜆 ) > 𝜇 . 

This setup is called a mixture model for count data: suppose that given 𝜆 , y has a Poisson(𝜆 ) 

distribution, and 𝜆  has the gamma distribution. Recall that the gamma distribution has E(𝜆 ) = 𝜇  

and var(𝜆 ) = 𝜇 2∕k for a shape parameter k > 0, so the standard deviation is proportional to the 

mean. Marginally, the gamma mixture of the Poisson distributions yields the negative binomial 

distribution for y. Its probability mass function is 

p(𝑦; 𝑢, 𝑘) =
Γ(y+k)

Γ(k)Γ(y+k)
(

u

u+k
)

y

(
k

u+k
)

k

,                       y=1,2,3,……. 

Equation  7 
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With k fixed, this is a member of an exponential dispersion family appropriate for discrete 

variables with natural parameter log(
𝒖

𝒖+𝒌
). 

if 𝛾  = 1∕k then  E(y) = 𝜇 , var(y) = 𝜇  + 𝛾 u2 

The index 𝛾  > 0 is a type of dispersion parameter. The greater the value of 𝛾 , the greater the 

overdispersion relative to the Poisson. As 𝛾  → 0, var(y) → 𝜇  and the negative binomial 

distribution converges to the Poisson.  

The negative binomial distribution has much greater scope than the Poisson. For example, the 

Poisson mode is the integer part of the mean and equals 0 only when 𝜇  < 1. The negative binomial 

is also unimodal, but the mode is 0 when 𝛾  ≥ 1 and otherwise it is the integer part of 𝜇 (1 − 𝛾 ). 

The mode can be 0 for any 𝜇 . 

2.3.11. Negative Binomial GLMs 

Negative binomial GLMs commonly use the log link, as in Poisson loglinear models, rather than 

the canonical link. For simplicity, we let the dispersion parameter 𝛾  be the same constant for all n 

observations but treat it as unknown, much like the variance in normal models. This corresponds 

to a constant coefficient of variation in the gamma mixing distribution, √var(λ) ∕ E(λ) = √λ 

The loglikelihood function for a negative binomial GLM with n independent observations is 

L(B, λ, y) = ∑ [logΓ (yi +
1

λ
)

1

i=1
− logΓ (

1

λ
) − logΓ(yi + 1)] + ∑ [yilog (

λ𝑢𝑖

1+λ𝑢𝑖
)

1

i=1
−

1

λ
 log(1 +

+λ𝑢𝑖)] 

Equation  8 

where 𝑢𝑖 is a function of 𝜷  through ni = g(𝑢𝑖) = ∑ BjXi,j

p

j=1
with the link function g.  

2.3.12. Negative Binomial Model with Variance Proportional to Mean 

An alternative negative binomial parameterization results from writing the gamma density formula 

with k𝜇  as the shape parameter, 
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𝑓(λ, k, u) =
𝑘𝑘𝑢

𝛤(𝑘𝑢)
𝑒𝑥𝑝(−𝑘𝜆)𝜆𝑘𝑢−1,   𝜆 ≥ 0 

Equation  9 

So E(𝜆 ) = 𝜇  and var(𝜆 ) = 𝜇 ∕k. For this parameterization, the gamma mixture of Poisson 

distributions yields a negative binomial distribution with 

E(y) = 𝜇 , var(y) = 𝜇 (1 + k)∕k. 

The variance is now linear rather than quadratic in 𝜇 . It corresponds to an inflation of the Poisson 

variance, converging to it as k → ∞. 

The two parameterizations of the negative binomial are sometimes denoted by NB1 (linear) and 

NB2 (quadratic). Only the NB2 falls within the traditional GLM framework, being expressible as 

an exponential dispersion family distribution, and it is much more commonly used. Unlike the 

NB2 model, for an NB1 model 𝜷  and k are not orthogonal parameters, and 𝜷 ̂ is not a consistent 

estimator when the model for the mean holds but the true distribution is not negative binomial 

(Cameron and Trivedi 2013). 

2.3.13. Model diagnostics 

Diagnostics in regression analysis consists of procedures for exploring and testing the adequacy 

and goodness of fit of fitted models. In the context of generalized linear models this refers in 

particular to the examination of several types of residuals and deviance analysis. Deviance analysis 

is carried out routinely through a statistic called the scaled deviance and the closely related 

information criteria AIC and BIC.  

2.3.14. Model selection 

Evaluation and selection among several competing models is based on Akaike’s information 

criterion (AIC). The AIC criterion is defined as a function of the number of independent model 

parameters, 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝑃𝐿(B̂) + 2𝑝, 

  

Equation  10 
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where ,B̂ is the maximum partial likelihood estimator of B and p is the “model order”, p = dim(B). 

We choose the model corresponding to p that minimizes AIC.  

2.3.15. Residuals 

Residual means a certain deviation of a fitted from an observed value. Residual analysis is 

important in assessing the goodness of fit-how well the fitted model explains the observed data-of 

a regression model, and in judging the impact and significance of covariates on the response. There 

are several ways to define residuals in the context of time series following generalized linear 

models. The most obvious definition is that of the so called raw or response residuals 

𝑒̂𝑡 = 𝑌𝑡 − µ̂𝑡, t=1,…,N 

Three popular additional types of residuals, Pearson, working, and deviance, are defined in terms 

of the raw residuals as follows. The Pearson residuals are the standardized version of raw or 

response residues obtained by dividing each raw residual by the square root of the estimated 

variance to obtain the standardized Pearson residuals as follows; 

𝑟̂𝑡 =
𝑌𝑡−µ̂𝑡

√𝑉(µ̂𝑡)
, t = 1,…,N. 

 

Equation  11 

The working residuals are a different standardized version obtained after fitting a working model, 

which is an initial approximation to the true model, 

𝑤̂𝑟𝑡 =
𝑌𝑡−µ̂𝑡

𝑑µ𝑡/𝑑𝑛𝑡
, t = 1,…,N. 

 

Equation  12 

where 𝑑µ𝑡/𝑑𝑛𝑡is evaluated at B̂. The deviance residuals are given by 

𝑑̂𝑡 = 𝑠𝑖𝑔𝑛(𝑌𝑡 − µ̂𝑡)√2[𝑙𝑡(𝑦𝑡) − 𝑙𝑡(µ̂𝑡)], t=1,…,N 

Equation  13 
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where the sum of squares of deviance residuals is equal to the deviance statistic. 

2.3.16. Distributed lag non-linear model  

Oftentimes, the effect of exposure to environmental stressors or other events is not limited to the 

time period when it occurs, but is delayed in time.  That is the case of climatic variables effects (as 

adverse temperatures) that may last in time, spreading over several days. That being said, the 

impact of the environmental stressors at a given time may be explained by a combination of past 

exposures over several time lags, once it depends simultaneously on the intensity and timing of 

the exposures. A common way to model a non-linear effect with this additional time dimension is 

through distributed lag non-linear models (DLNMs)  

The family of distributed lag non-linear models was developed to simultaneously estimate the non-

linear dose-response dependencies and the delayed effects of temperature on mortality. It is based 

on a bi-dimensional space of functions, called “cross-basis”, that describes the shape of the 

relationship simultaneously along the space of the predictor - temperature, in this case - and along 

its lag dimension, i.e., the time structure of the exposure–response relationship.  

Initially, distributed lag models (DLMs) were developed for time series analysis and extensively 

used in econometric and social sciences before being adapted to epidemiology research. This 

family of models used to account for linear dependencies only, so Armstrong extended this 

methodology to distributed lag non-linear models (DLNMs), and it has since been used to 

simultaneously estimate the non-linear and delayed effects of temperature and air pollution on 

mortality or morbidity Hence, to understand a DLNM well one must first understand DLMs. A 

DLM is a dynamic model that estimates the effect of a regressor x on a response y over different 

time moments t. It can generally be represented as follows: 

𝑦𝑡 = 𝛼 + 𝐵0𝑥1 + 𝐵1𝑥𝑡−1+..+𝐵𝐿𝑥𝑡−𝐿+𝑢 

Equation  14 

where α is the intercept, u is a stationary error term and L is the maximum lag allowed (L ≥ 1). 

Each of the coefficients βl stands for the weight of the respective lag l (l = 0, 1,...,L).  

Bl coefficients may be interpreted either from a backward standpoint - the effect of the past 

exposition xt−1 on the present moment response y𝑡, i.e., the effect felt today due to the exposition 
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L days before, lag = l -, or from a forward standpoint - the effect of the current exposition xt  on 

the future response L moments later, y𝑡+1, i.e., the effect that today’s exposure will cause L days 

from now . Thus, the coefficients Bl represent the lag weights and all together define the lag 

distribution.  

Assuming there is a temporary change on the regressor variable x, which increases one unit only 

in moment t, xt, then its immediate effect, y𝑡 , will have an increase equal to the value of B0. On 

the next moment (t+1) the effect y𝑡+1, will increase B1  units. After that the effect y𝑡+1 will increase 

B2 units and so on, until the maximum lag, L, when the effect y𝑡+𝐿 increases BL  units. This is 

called the marginal effect of x on y.  

Another hypothesis to consider would be a permanent change in the regressor variable. Assuming 

it increases one unit in moment t and remains that high in all future moments, then its immediate 

effect y𝑡 will also have an increase equal to the value of B0. However, in the future moment (t+1) 

the effect y𝑡+1 will increase B0 + B1 values, after which the effect y𝑡+2 will increase β0 +β1 +β2 

values and so on, until the maximum lag L, when the effect y𝑡+𝐿 increases β0 +β1 +β2 +...+βL 

values. This is called the cumulative effect of x on y. 

According to Gasparrini (2014) and assuming there is a linear exposure–response relationship, a 

general notation to describe the dependency in terms of exposure history to x evaluated at time t 

as: 

S(x, t) = ∫ Xt−lw(L) ⅆL
L

L0

 

Equation  15 

where w(L) represents the weighting basis-function applied to constrain the coefficients Bl. w(L) 

is directly defined in the lag dimension and determines the lag-response function that models the 

lag–response curve associated with exposure x. 

S(x, t) will then be included in a generalised linear model as a sum of linear terms, with related 

parameters η. The function S(x, t) may be rewritten following a matrix notation, by applying the 

basis transformation over the lags - w(l) - and then combining it with the vector of expositions qr. 
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S(xt, n) = qrn = wt
Tn 

Equation  16 

where  

  qt = [xt, … , xt−1, … , xt−L]T is an original vector of ordered exposure histories, 

corresponding to a column of the n×(L+1) matrix Q. As such qt changes along time, 

depending on the moment t when it is defined. 

 L = [0, … , l, … , L]T is a vector of lags corresponding to the L+1 columns of Q 

 C is a (L+1)× vt matrix of lag-basis variables originated from the application of the basis-

function to the lag vector l  (where the basis-function is defined as w(l) with dimension vt); 

 η is a vector of unknown parameters. 

Hereupon, wT is a vector from the matrix W = QC, which is the matrix of the vl transformed 

variables (obtained from the application of a basis lag function to the original lag vectors l - w(l) - 

combined with the original exposure histories, qt). This vt basis variables from the matrix W will 

be included in the design matrix to allow the estimation of the unknown parameters η. The 

estimated parameters 𝒏̂ define the previously mentioned coefficients 𝑩𝒍 

𝑩̂ = Cn̂ 

Equation  17 

The extension from DLM to distributed lag non-linear models (DLNM) was achieved by adding 

an exposure–response non-linear function along the dimension of the predictor x. 

S(xt, B) = zt
TB 

Equation  18 

On this function, zt
T. is the ttn line of the matrix Z - aη × 𝒗𝒙  basis matrix resulting from the 

application of the basis-function - called f(x), of dimension 𝒗𝒙 , to the original vector of exposures 

x 

Therefore, a generalization to DLNM will be adding a basis-function along the dimension of the 

predictor x to the already mentioned basis-function along the dimension of the lag l in; 
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S(x, t) = ∫ Xt−lw(L) ⅆL
L

L0

 

Equation  19 

where f(x) is the exposure-response function with dimension 𝒗𝒙 and w(l) is the previously 

mentioned lag-response function. These are the two basis-functions, which may be chosen 

independently of each other. The basis-functions impose a set of completely known 

transformations of x, generating new variables, called basis variables. 

The representation above assumes that the functions f(x) and w(l) are independent, i.e., that the 

exposure-response function is the same along all the lag space and that the lag structure is equal 

for all values of x. If we relax this assumption, admitting an interaction between the value of the 

predictor and its timing, then it may be more flexibly represented as: 

s(x, t) = ∫ f ⋅ w(x−2−1, L) ⅆL
L

t0

 

Equation  20 

Following this notation, f·w(x,l)  is a bivariate function, that models simultaneously the exposure 

response structure along x and the lag-response structure along l, defining the exposure–lag–

response function . In other words, s(x,t) is a linear combination of the basis-functions f(x) and 

w(l), integrated over the lag dimension, which defines a bi-dimensional space of functions that 

Armstrong (2006) called cross-basis function and which represent the core of DLNMs. 

Each basis-function (f(x)= ∑ BbXb
B
b−1   and w(l) = ∑ Bplp

P

p−1
  ) is fitted following the chosen 

function distribution, f() and w() respectively, originating B/P basis variables from the original 

ones. Then the new transformed variables will enter the regression model, instead of the original 

variables. The number of basis variables, B and P, determines the degrees of freedom (df) of the 

respective curves. B df for the dimension of the predictor and P df for the dimension of the lags. 

So the degrees of freedom of the cross basis-function is given by the product of the number of 

basis variables from f(x) and from w(l), B×P.  
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The cross-basis function is better represented using matrix notation as Gasparrini et al (2021). Let 

R˙ be a η × 𝒗𝒙   ×(L+1) array of the lagged occurrences of each of the basis variables of x, keeping 

C as the matrix of basis variables for the lag dimension, 

s(xt, B) = ∑∗

vx

j=1

∑ rx
Tcknjk

vL

l=l′

= wt
Tn 

Equation  21 

where rtj is the vector of lagged exposures for the time t transformed through the basis-function j 

and ck is the vector of lags transformed trough the basis-function k. Now, 𝐰𝐭
𝐓 will be defined as 

the vector obtained by applying the vx ·vL cross-basis functions to xt . As such, both basis-

functions are then simultaneously used to create the vx ·vL basis variables, stored in the W matrix. 

The cross-basis flexibly describes the relation along x, allowing for linear and non-linear exposure-

responses, combining it with the distributed lag-effects (an additional time-dimension). So, the vx 

·vL basis variables originated from the cross-basis function will enter the regression model instead 

of the original variables 

We may now generally represent a basic DLNM, using a cross-basis function to express the non-

linear relation between the predictor variable x and the response variable y along time. Following 

the notation of Gasparrini et al (2021), we obtain: 

g(ut) = α + ∑ sj(xxj; nj)

J

j=1

+ ∑ γkutk

k

k=1

 

Equation  22 

where 𝒖𝒕 = E(𝒚𝒕) and g is a monotonic link function; α is the intercept; sj is the cross-basis function 

that denotes smoothed relationships between the variables xxj and the linear predictor - defined by 

the parameter vectors 𝐧𝐣 , and utk are other predictors variables with linear effects over Y, 

measured by the coefficients γk. 
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In this family of models, Y is assumed to follow a distribution from the exponential family. The 

two basis-functions used in the cross-basis 𝒔𝒋 may be chosen from a wide variety of modelling 

options. Those options are: 

Exposure space:  

 a polynomial function, whose order must be determined; 

 a stratified model, with chosen strata intervals;  

 a spline function, for which the number and placing of knots must be chosen;  

 linear thresholds; 

Lag space: 

 a polynomial function, whose order must be determined; 

 a stratified model, with chosen strata intervals; 

 a spline function, for which the number and placing of knots must be chosen;  

 the coefficients may be unconstrained; 

The options selected will determine the flexibility of the model. Simpler models (as linear 

thresholds) are usually less flexible but easier to interpret than the more complex ones (as natural 

cubic splines functions), while the latter may better adjust to the data and capture most of the 

relationship details and are less likely to leave residual confounding.  

Other predictor variables may be included in the model. For instance, as happens in order to control 

for confounding, a smooth function of time to capture long-time trends and/or seasonality and 

some categorical variables, as day of the week are applied. 

 Also, the analysts must determine the maximum lag, L, which will depend on how long they 

believe an effect may be sustained in time. For instance, the maximum lag allowed should be 

higher if harvesting effects are expected, which may reflect on negative coefficients for longer 

lags.  

All options have advantages and disadvantages, so the choice will depend on the purpose of the 

analysis, on a priori assumptions and/or the fitting of the model. The model fitting criteria mostly 

used in this are the Akaike’s information criteria (AIC) and the Bayesian information criteria 

(BIC). 



31 
 

2.4. Methods and Materials 

2.4.1. Study Context 

Mangochi district is located in the southern region of Malawi and had a total population of 

1,148,611, 6.5% of national population in 2018 (Malawi Housing and Population Census, 2018). 

It is a lakeshore district which is among 11 high malaria burden districts (Government of Malawi, 

2020). It comprises of 1 district hospital and 41 health centers and several village clinics providing 

malaria services. All suspected uncomplicated malaria cases are tested using malaria rapid 

diagnostic test (mRDTs) at all levels (central, district, health center, clinic, community) 

(Government of Malawi, 2020). Light microscopy is used to test suspected complicated malaria 

cases (where capacity allows), diagnose severe malaria cases and confirm malaria treatment failure 

(Government of Malawi, 2020). Community case management aims to address three main 

childhood killers namely; malaria, pneumonia and diarrhoea. It promotes early recognition, prompt 

diagnostic testing, and appropriate treatment of malaria among children under five years in the 

home or community. It is an equity-focused strategy that aims to improve access for under-five 

children in hard-to-reach areas thereby improving timely and effective treatment of malaria.  

2.4.2. Response Variable: Malaria incidence 

Malaria is routinely collected at health facility level and uploaded into District Health Information 

System on monthly basis aggregated by health facility, district and national level. Reported malaria 

cases are cases confirmed through mRDT and Microscopy, unconfirmed malaria cases (clinical 

cases without confirmation) were excluded in this analysis. Malaria monthly data between 2015 

and 2020 for Mangochi district was provided by national malaria control program in Malawi.  

2.4.3. Primary Covariates: Climate data 

In this study, data for monthly meteorological variables, including the daily maximum and 

minimum temperature; relative humidity; and the amount of rainfall were obtained from 

department of metrological services and climate change.  

2.4.4. Distributed Lag Non-Linear Model 

The outcome variable in this study was the number of monthly confirmed malaria cases spanning 

for a period of 6 years between January 2015 to December 2020.  The explanatory variables were 
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climate factors; temperature (monthly minimum temperature and monthly maximum temperature), 

monthly rainfall (mm) and monthly relative humidity from January 2015 to December 2020. All 

the climate variables are continuous variables. 

A time series regression was applied to model mean monthly malaria incidence as outcome 

variable and climate factors as explanatory variables expressed as follows. Let 𝑌𝑡 be monthly 

malaria cases, then  

𝑌𝑡~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇𝑡) 

𝑙𝑜𝑔(𝑢𝑡) = 𝛼 + ∑ 𝑆𝑗(𝑥𝑡,𝑗 , 𝐵𝑗)
𝐽

𝑗=1
+ ∑ 𝜓𝑘(𝑧𝑡𝑘)𝐾

𝑘=1 + 𝑠(𝑡𝑖𝑚𝑒, 𝑝) + 𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  

Equation  23 

where yt is a series of monthly malaria cases spanning for a period of 72 months, t=1,…72, 𝑢𝑡 is 

expected monthly malaria cases, log(𝑢𝑡) is a log link function, α is an intercept term and 

𝑠(𝑡𝑖𝑚𝑒, 𝑝) is a natural cubic splines to control for seasonality in malaria time series. Non-linear 

effects of climate are modelled using distributed lag non-linear model (DLNM) specified by 

function ∑ 𝑆𝑗(𝑥𝑡,𝑗, 𝐵𝑗)
𝐽

𝑗=1
. The function 𝑆𝑗 specify the relationships between the meteorological 

variables X𝑗 at lag month j and the linear predictor defined by the parameter vectors 𝐵𝑗 (Gasparrini, 

2011).  The variables z𝑡𝑘 are other predictors with linear effects specified by the related coefficients 

𝜓𝑘, such as indoor residue spray (IRS) intervention in this study. A negative binomial family 

account for over dispersion of monthly malaria incidence while population offset to control for 

changes of population over time. 

Data was analyzed using R version 3.2.4 (Team RC. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. 2017).  

2.5. Results 

2.5.1. Descriptive statistics 

A total of 1,935,056 malaria cases were reported between 2015 and 2020, with 860,745 cases 

occurring in children under the age of five and 1,074,311 cases occurring in individuals aged five 

and above. The highest number of malaria cases in a single year was 418,394, reported in 2018, 
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while the lowest number of cases was 210,279, reported in 2020. On a monthly basis, the average 

number of malaria cases was 26,876. The highest number of cases was observed in May 2018, 

with 53,449 cases, while the lowest number of cases was reported in August 2016, with 11,124 

cases. The yearly averages and standard deviations for climate variables are provided in Table 1. 

Table 1 Yearly means and standard deviations for climate variables 

  

2015 2016 2017 2018 2019 2020 

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

Malaria 20317 5699 24345 11155 30872 11776 34866 13636 33332 12125 17523 3503 

Max Temp 31 3 32 3 31 2 31 3 30 2 31 3 

Rainfall 86 156 64 90 97 121 55 62 87 115 54 83 

Humidity 64 16 62 14 66 15 68 13 67 14 64 13 

Monthly patterns of climate variables between 2015 and 2020 is as shown in Figure 1 below. 

 

 

 

Figure 1 : Monthly pattern of climate variables between 2015 and 2020 
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Exploration of malaria seasonal trend visually coincide with seasonal trends of climate variables 

as shown in Figure 2a-b-c-d. This pictorial coincidence of climate variables and malaria cases 

suggests possible seasonal correlation. 

(A) 

 

(B) 

 

 

(C) 

 

(D) 

 

Figure 2:  Seasonality of malaria cases and climate variables 

Furthermore, scatterplots between malaria cases and climate variables depicts a linear pattern 

between humidity and malaria cases as shown in Figure 3b but does not show obvious patterns 

with rainfall and temperature Figure 3a-c-d. 
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(A) 

 

  

(B) 

 

  

(C) 

 

  

(D) 

 

  

Figure 3: Association between malaria cases against climate variables and lowess line 

2.5.2. Distributed Lag Non-Linear Model building 

Table 2 shows variable correlation matrix which shows that malaria cases correlated positively 

with rainfall and humidity at lag-0, (r 0.112, 0.567), while a negative correlation was observed 

with minimum and maximum temperature (r -0.284 and -0.078).  As reported by Chuang et al 

(2017), collinearity, or excessive correlation among explanatory variables, can complicate or 

prevent the identification of an optimal set of explanatory variables for a statistical model (Chuang 

& Ting, 2017). In this study, correlation between climate variables was assessed using pearson 

correlation to identify climate variables that have excessive collinearity. The correlation matrix in 

Table 2 shows positive correlation between variables: maximum and minimum temperature 

(correlation coefficient 0.813), minimum temperature and rainfall (correction coefficients 0.536) 

and humidity and rainfall (correlation coefficients 0.512). 
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Table 2: Cross correlation matrix of climate variables 

Variables Malaria Rain Humidity Max Tem Min Tem 

Total malaria cases 1.00 0.112 0.567 -0.284 -0.078 

Rain 0.112 1.00 0.512 0.133 0.536 

Humidity 0.567 0.512 1.00 -0.377 0.122 

Maximum Temperature -0.284 0.132 -0.377 1.00 0.813 

Minimum Temperature -0.078 0.537 0.122 0.811 1.00 

 

Variance inflation factor (VIF) was further applied to assess the impact of collinearities in the final 

model. Qinqin et al (2018) recommended dropping high correlated variables with VIF above 5 to 

minimize impact on model sensitivity (Qinqin, Runzi, Shannon, Cheng, & Yafei, 2018).  The 

variance inflation factor is given by the formula below. 

 

Equation  24 

where the  for variable  is the inverse of  from the regression. A VIF is calculated for 

each explanatory variable and those with high values are removed. 

The VIF results showed high VIF above 5 for minimum and maximum temperature as shown in 

Figure 4a.  Following Qinqin recommendation, the two highly correlated climate variables cannot 

be combined as regressors in a model and therefore minimum temperature which has highest VIF 

was dropped and the resultant model has reduced variance inflation factor among all climate 

variables as shown in Figure 4b. 



37 
 

(a)VIF with all variables 

 

(b)VIF with min Temp removed 

 

Figure 4: VIF values for climate variables 

2.5.3. Exposure Lag Response relationship 

Model specifications in the exposure-lag dimensions for climate variables were selected among a 

wide range of linear and no-linear functions by examining Akaike Information Criterion (AIC). A 

total of 18 model candidates with different specifications in exposure-lag dimensions were 

assessed as shown in Table 3. 
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Table 3  Exposure-lag response specifications for climate variables 

 

Exposure-Lag response 
combination 

Exposure-
response 
f(x) 

 Lag response 
w(l) 

Exposure 
(Degree and 
Knots) 

Response(Degree and 
Knots) 

AIC BIC 

Rainfall/Precipitation 

Linear-Linear Linear Linear     27370 27409.69 
Linear-Polynomial Linear Polynomial     27330 27372.91 
Polynomial-Linear Polynomial Linear     26650 26698.35 
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26410 26466.76 
Natural Cubic Splines 
function-Linear 

NS Linear Quantiles   26610 26663.01 

Natural Cubic Spline 
function-Polynomial 

NS Polynomial Quartiles 2D  26310 26369.45 

Humidity 

Linear-Linear Linear Linear     27220 27261.94 
Linear-Polynomial Linear Polynomial     27150 27198.23 
Polynomial-Linear Polynomial Linear     27140 27190.62 
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26780 26839.57 
Natural Cubic Splines 
function-Linear 

NS Linear Quartiles   26920 26972.65 

Natural Cubic Spline 
function-Polynomial 

NS Polynomial Quartiles 2D 26610 26677.69 

Maximum Temperature 

Linear-Linear Linear Linear     27390 27430.31 
Linear-Polynomial Linear Polynomial     27360 27402.27 
Polynomial-Linear Polynomial Linear     27180 27230.17 
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26830 26884.8 
Natural Cubic Splines 
function-Linear 

NS Linear Quartiles   27160 27215.84 

Natural Cubic Spline 
function-Polynomial 

NS Polynomial Quartiles 2D 26830 26899.46 



39 
 

The examination of AIC from different functions in the exposure–lag dimension for climate 

variables showed that cubic splines in exposure dimension and polynomial in lag response 

dimension have lower AIC across all the three climate variables. The natural cubic splines with 

knots placed at equal intervals in exposure space and polynomial in lag response dimension have 

lowest AIC. This confirms the existence of non-linear relationship in the predictor space. Finally, 

basis variables were generated and added in the final model using backward selection method. The 

backward variable selection showed model improvement associated with incorporation of climate 

basis variables. 

The final specification in the exposure dimension for climate variables was a natural cubic spline 

with knots placed at equal intervals and polynomial of degree 2 in the lag response dimension. 

Seasonality is controlled by natural cubic splines.  

Indoor Residual Spraying (IRS) intervention period was also included as a predictor in the final 

model. To control for changing population, an offset of log transformed population was included 

in the final model. GLM negative binomial family was applied to account for over dispersion of 

monthly malaria cases.   

2.5.4. Lagged effects of rainfall  

The exposure lag response relationship between rainfall and malaria incidence is illustrated in 

Figure 5a which shows nonlinear relationship between precipitation and malaria incidence. 

Increasing precipitation is associated with increased malaria risk which peaked at lag 0 when 

monthly rainfall reached maximum of 541mm, RR 2.4314162, CI  95% (2.0554548, 2.8761443) 

compared to risk when there is an average rainfall of 74.5mm.  Predicted effects are sustained 

across all the 3 lags and are more certain (narrow confidence interval) as shown in Figure 5d. 

Figure 5b is a heat map showing virtual representation of relative risk which also indicates high 

risk associated with increasing rainfall and visually peaked at lag-0. 
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(a)  

 

(b) 

 

(c) 

 

(d) 

 

Figure 5: 3D relationship, relative risk and lag specific effects between malaria cases and 

rainfall 

2.5.5. Lagged effects of humidity 

The effect of humidity is illustrated in the Figure 6a which shows nonlinear relationship between 

humidity and malaria incidence. Increasing humidity is associated with increased relative risk 

which peaked at lag 0 (same month) when relative humidity reaches 84, RR 2.0537649 CI 

(1.9435101, 2.1702744) compared to relative risk at mean humidity. The overall effects of 

humidity are more certain (narrow confidence intervals) and sustained up to lag-2 as shown in 

Figure 6d. Figure 6b is a heat map indicating virtual representation of relative risk which also 

indicates high risk associated with increasing humidity and visually peaked at lag-0. 
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6: 3D relationship, relative risk and lag specific effects between malaria cases and 

humidity 

2.5.6. Lagged effects of maximum temperature  

The relationship between maximum temperature and malaria cases is shown in Figure 7a which 

depicts nonlinear exposure lag response relationship. Increasing maximum temperature is 

associated with increased risk which peaked at lag 0 (same month) when temperature reach 34 

degrees Celsius, RR 1.3907299 CI (1.3523290, 1.4302212) and sustained up to lag 2 as shown in 

Figure 7d.  Predicted effects are more certain, narrow confidence intervals, across all lags. Figure 

7b is a heat map showing virtual representation of relative risk which also indicates high risk 

associated with increasing humidity and visually peaked at lag-0. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 7: 3D relationship, relative risk and lag specific effects between malaria cases and 

maximum temperature 

2.6. Discussions  

The observed nonlinear relationship between rainfall and malaria incidence highlights the 

influence of precipitation in the breeding and survival of mosquito vectors consistent with many 

studies in this area. The positive association between increasing precipitation and malaria risk 

confirms that areas with higher rainfall are more conducive to mosquito breeding, leading to a 

higher prevalence of malaria cases. As reported by Yoonhee et al. (2019), rainfall is considered 

one of the main weather factors determining malaria epidemics. Also, the observed 0-2 months 

delayed effect of rainfall is consistent with results reported by some studies such as a paper by Jae 

et al (2012) who suggested that lagged estimates of the effect of rainfall on malaria are consistent 

with the time necessary for mosquito development and P. vivax incubation. More importantly, the 
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observed peak(double) of malaria risk immediately following periods of extreme rainfall 

conditions, highlights the significance of short-term effects of rainfall and possible outbreaks 

following extreme rainfall events.  

The impact of humidity on malaria incidence has been extensively studied, and the study findings 

reaffirm the positive association between humidity and malaria risk. The observed immediate peak 

in malaria risk (same month), coinciding with extreme conditions of humidity, supports the notion 

that humidity acts as a crucial factor in influencing mosquito populations and subsequent malaria 

transmission. This result is also consistent with Philippe et al.'s (1995) report, which states that 

higher levels of humidity prolong the lifespan of mosquitoes and enable them to infect more 

people. 

Similarly, the nonlinear relationship between temperature and malaria cases is consistent with 

previous research linking the disease and temperature conditions. The observed peak in malaria 

risk following high temperatures emphasizes the importance of temperature in shaping the 

dynamics of malaria transmission. As reported by Gunda et al. (2017), temperature affects malaria 

transmission by regulating the rate of development of mosquito larvae, which in turn influences 

mosquito survival rates. 

In general, the results revealed an immediate peak (same month) in malaria risk following extreme 

weather conditions, highlighting the importance of short-term effects of climate. The risk of 

malaria immediately doubles with extreme rains and humidity compared to average weather 

conditions. This is consistent with Florence et al.'s (2019) report linking climate extreme events 

with outbreaks. The study also found delayed but diminishing effects of climate conditions from 

0-2 months lag, indicating that the impact of climatic variables persists over multiple time 

intervals. This result is consistent with a report by Gunda et al (2017) which showed significant 

association between malaria incidence and the climatic variables at specific lag periods. (Gunda, 

Chimbar, Shamu, Sartorius, & Mukaratin, 2017). Similar to this study, the paper found that 

precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly 

associated with incidence at specific lag periods in Ntalale ward. DLNM results suggest a key risk 

period in current month, based on key past climatic conditions. Mostly, the findings in this study 

are consistent with the existing literature, supporting the notion that climate variables play a crucial 

role in the transmission dynamics of malaria. Yoonhee et al.'s (2019) similarly reported that global 
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and local climate change can alter the spatial and temporal distribution of malaria, increasing 

opportunities for malaria transmission in traditionally non-malarious areas. Therefore, climate 

change has helped to create conditions that are conducive to vector breeding in certain areas of 

Malawi, which can help explain the observed shifts in malaria epidemiology. 

Overall, the observed delayed effects of climate factors highlight the significance of climate 

conditions in the distribution and transmission of malaria. For instance, a study by Odgan et al. 

(2017) reported similar findings, indicating that diseases such as malaria are intrinsically sensitive 

to weather and climate. Moreover, our study provides additional evidence by incorporating lag 

effects, illustrating that the impact of these climatic variables persists over multiple time intervals. 

The results of the study suggest that the climate conditions experienced in the preceding months 

play a crucial role in predicting the incidence of malaria in the upcoming months. 

The narrow confidence intervals observed in our predicted effects indicate a greater certainty in 

the association between climatic factors and malaria incidence. This suggests that the relationships 

identified are robust and consistent across different lag times, lending further credibility to the 

findings. 

2.7. Limitations and recommendations 

While the study contributes to the existing literature, it is important to acknowledge some 

limitations. Firstly, this study focused on a specific geographical region (Mangochi district), and 

therefore, caution should be exercised when generalizing the results to other locations. Secondly, 

the use of long monthly lags may affect the accuracy of the analysis, especially when climatic 

conditions exhibit significant variations over time. It would be beneficial to further investigate the 

effect of shorter lags, such as weekly data, to capture more immediate associations between climate 

and malaria incidence. Thirdly, the analysis did not account for important socio-economic factors 

and other potential confounders that can influence malaria transmission, such as local mosquito 

control programs. Unfortunately, the data on these factors were not available for inclusion in this 

study. Future research should strive to incorporate these variables to gain a more comprehensive 

understanding of the complex interplay between climate, socio-economic factors, and malaria 

transmission dynamics. 
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2.8. Conclusion 

In conclusion, the study provides further evidence supporting the nonlinear relationship between 

climate conditions and the risk of malaria. These findings have implications for malaria control 

and prevention strategies, highlighting the importance of climate monitoring and forecasting in 

targeted interventions. By considering the impact of climatic factors, public health authorities can 

develop proactive measures to mitigate the spread of malaria, particularly in regions prone to 

extreme weather events. Continued research in this field will contribute to a better understanding 

of the complex interactions between climate and malaria transmission dynamics, ultimately aiding 

efforts to reduce the burden of this disease.  
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CHAPTER 3 

EVALUATING IMPACT OF INDOOR RESIDUE SPRAY (IRS) MALARIA 

INTERVENTION WHILE ACCOUNTING FOR LAGGED EFFECTS OF CLIMATE 

FACTORS IN MANGOCHI, MALAWI 

3.1. Introduction  

In Malawi, indoor residue spray (IRS) remains key in malaria prevention and control although its 

implementation is generally low.  It is a population level intervention applied at specific period of 

time which is expected to interrupt long-time trend of malaria in the post-intervention period. Due 

to ethical and practical barriers, large interventions such as indoor residue spray (IRS) do not have 

randomized control groups which limit the use of other statistical models such as randomized 

control trials (RCT) to model effects of an intervention. An attempt to randomize and establish 

control groups within indoor residue spray (IRS) implementation area may result in partial indoor 

residue spray (IRS) implementation which is prohibited as it promotes vector resistance (Vector 

Control Strategy-Malawi, 2015-2019). In the absence of randomization, interrupted time series 

(ITS) is principally appropriate tool for analyzing observational data where full randomization, or 

a case-control design, is not affordable or possible (Evangelos, Tim, David, & Iain, 2015).  

ITS models such as segmented time series regression can be used to evaluate effectiveness of 

population-level health interventions such as indoor residue spray (IRS) that have been 

implemented at a clearly defined point in time (Lopez, Soumerai, & Gasparrini, 2018). The design 

takes advantage of natural experiments whereby an intervention is introduced at a known point in 

time and a series of observations on the outcome of interest exist both before and after the 

intervention (Lopez, Soumerai, & Gasparrini, 2018).  ITS accounts for potential risk factors such 

as long time trends to hypothesize expected scenario under which an intervention had not taken 

place and the trend continues unchanged (‘expected’ trend, in the absence of the intervention, given 

the pre-existing trend) which is referred to as the ‘counterfactual’. Interrupted time series designs 

are immune to many of the threats to validity compared to other observational designs (Wagner, 

Soumerai, Zhang, & Degnan, 2002).  
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In this study, a segmented time series regression was applied to evaluate impact of indoor residue 

spray (IRS) malaria intervention while controlling for delayed effects of climate conditions. Nested 

models with and without lagged climate variables were compared to select the best model that 

predict malaria cases. In addition, this study examined the influence of lagged climate variables 

on parameter estimates when assessing the effectiveness of indoor residue spray (IRS). The model 

was further used to project the expected outcomes if the intervention had not been implemented. 

Furthermore, the model can be utilized to predict potential future epidemics based on past climate 

experiences in Mangochi district. 

3.2. Literature review 

Although randomized controlled trials (RCTs) are considered the ideal approach for assessing the 

effectiveness of interventions, many interventions trials can be prohibitively expensive 

(Evangelos, Tim, David, & Iain, 2015). Evangelos et al (2015) emphasised that even well designed 

RCTs can be susceptible to systematic errors leading to biased estimates, particularly when 

generalizing results to “real world” settings. Observational studies address some of these 

shortcomings, but the lack of researcher control over confounding variables and the difficulty in 

establishing causation mean that conclusions from studies using observational approaches are 

generally considered to be weaker. Evangelos further pointed out to the eligibility criteria of RCT 

which is generally limiting between ranges from 3.5% to 50.7% in some studies due to presence 

of other constraining conditions. Evangelos et al (2015) however mentioned the strength of quasi-

experimental study designs such as ITS which are able to estimate causal effects using 

observational approaches to evaluate the longitudinal effects of interventions, through regression 

modelling. ITS can be applied in the absence of randomization and is principally a tool for 

analyzing observational data where full randomization, or a case-control design, is not affordable 

or possible. Although other assumptions limit ITS application such as presence of linear trends, 

the intervention is introduced gradually or at more than onetime point, external time varying effects 

or autocorrelation (for example, seasonality), or the characteristics of the population change over 

time, such limitations can be potentially dealt with through modelling if the relevant information 

is known. 

In another study to assess pre-ambulance care program, Monica estimated change in intercept and 

slope from pre- to post-intervention using segmented regression.  The paper mentioned major 
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strengths of segmented time series regression which included its ability to distinguish the effect of 

the intervention from secular change, that is, change that would have happened even in the absence 

of the intervention (Monica, Joanne, Craig, & Jeremy, 2014). The paper further mentioned that 

with a few simple changes to the data set-up and model specification, segmented regression 

analysis can easily be implemented in standard statistical software packages. The design is flexible 

to estimate the effects of different intervention components by adding multiple ‘interruptions’ to 

the time series although this requires a sufficient number of time points between interventions for 

independent effects to be estimated.  It also allows for phased and lag implementation by fitting a 

model with three segments, corresponding to the pre-implementation, implementation, and post-

implementation periods. Although it recommended segmented time series analysis for analysis of 

data from an interrupted time series study, several modifications were proposed to the basic 

segmented regression analysis approach to deal with challenges arising in the evaluation of 

complex time series data. Gebski et al (2012) in paper to evaluate impact of prevention and control 

of infection program in health care, a modified step wedge design was used to model effects that 

might take weeks or months to become effective and might be implemented in different units at 

different times (Gebski, Ellingson, Jern, & Kle, 2012).  

Segmented time series regression model has also been used in malaria studies to evaluate impact 

of interventions in malaria control.  McLean et al (2018) applied the model to assess effect of 

integrated community health worker (CHW) programmes in reducing Plasmodium falciparum and 

Plasmodium vivax malaria incidence and malaria rapid diagnostic test (mRDT) positivity with 

each year of community health worker (CHW) operation (McLean, Alistair, Aung, Zay, & Hla, 

2018).  Through the model it was established that communities with CHWs providing malaria 

diagnosis and treatment experienced declines in P. falciparum and P. vivax malaria incidence of 

70% (95% CI 66–73%) and 64% (59–68%) respectively each year of operation (McLean, Alistair, 

Aung, Zay, & Hla, 2018).  

Faranak et al..,2003 also applied interrupted time series regression to evaluate an intervention to 

reduce inappropriate use of key antibiotics in the UK.  The intervention was a policy for 

appropriate use of Alert Antibiotics (carbapenems, glycopeptides, amphotericin, ciprofloxacin, 

linezolid, piperacillin–tazobactam and third-generation cephalosporins) implemented through 

concurrent, patient-specific feedback by clinical pharmacists. The model captured increased use 
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of Alert Antibiotics before the intervention started but decreased steadily for 2 years thereafter 

(Faranak, Kirsteen, Dilip, Gabby, & Simon, 2003).  

The main focus of this chapter was to assess the impact of indoor residue spray (IRS) malaria 

intervention, taking into consideration the influence of lagged and non-linear effects of climate 

factors. Multiple nested models were constructed and compared using AIC and residue deviance 

as evaluation metrics. The study specifically examined the delayed effects of climate and its 

implications on parameter estimation regarding the impact of the intervention. Moreover, the 

selected model was applied to estimate the effectiveness of indoor residue spray (IRS) and to 

forecast potential future epidemics, considering past climate experiences and the implementation 

of the intervention. 

3.3. Malaria control in Mangochi 

Indoor residual spraying (IRS) is one of the primary vector control interventions for reducing and 

interrupting malaria transmission (Government of Malawi, 2020). The WHO Global Strategy for 

Malaria (2016-2030) also recommends that all people living in high Malaria burden areas be 

protected through the provision, use and timely replacement of long-lasting insecticide treated nets 

(LLINs), and where appropriate application of indoor residue spray (IRS) (WHO, 2016). In line 

with this and the 2017-2022 revised Malawi Malaria Strategic Plan, IRS has been prioritized as 

high impact vector control intervention in high malaria burden districts of Mangochi, Balaka and 

Nkhata bay (Government of Malawi, 2020). Furthermore, there is entomological evidence that the 

vectors predominant in these districts are A. funestus which exhibit endophagic and endophilic 

behaviors making indoor residue spray (IRS) intervention suitable (Government of Malawi, 2020).  

The national malaria control program conducted indoor residue spraying (IRS) in Mangochi 

district starting in November 2019. Other malaria control interventions implemented in the district 

recently include mass net distribution conducted in year 2016, routine net distribution targeting 

new born babies and pregnant women and larva source management promoted at community level.  

3.4. Methods and Materials 

3.4.1. Segmented Time Series Regression model  

This study utilized a segmented time series regression analysis to assess the effectiveness of the 

indoor residue spray (IRS) malaria intervention, which was initiated in November 2019 in 
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Mangochi district. The segmented time series approach allowed for the evaluation of the 

intervention's impact on malaria incidence and the detection of any notable changes in the malaria 

trends after the intervention implementation.  

The model frame is expressed as follows. Let 𝑌𝑡 be monthly malaria cases, then  

𝑌𝑡~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇𝑡) 

𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 +  𝐵2 ∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐵3 ∗ 𝑠𝑖𝑛 (
2𝜋𝑡

𝑇
)

+ 𝐵4 ∗ 𝑐𝑜𝑠 (
2𝜋𝑡

𝑇
) + ∑ 𝐵

𝑡

∗ 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

Equation 25 

In the model above, 𝑌𝑡 is number of malaria cases, 𝜇𝑡 is expecteⅆ monthly malaria cases, 

𝑙𝑜𝑔(𝜇𝑡) is log-link function, 𝛼 is baseline intercept, 𝐵1 is a coefficient representing a baseline 

trend, 𝐵2 is coefficient representing the effect of intervention, 𝐵3𝑎𝑛𝑑 𝐵4 are coefficients for sine 

and cosine functions to control for malaria seasonality. As evident from the findings of this study, 

it was observed that climate factors, including rainfall, temperature, and humidity, exhibited 

delayed effects on malaria incidence. Therefore, delayed climate variables were included in the 

model represented by ∑ 𝐵 𝑡 .  

In time series data, seasonality is a common issue where outcomes in one month tend to be more 

similar to those in neighboring months within the same time of year, leading to autocorrelation 

(Bernal, Cummins, & Gasparrini, 2016).   In this study seasonality was controlled using sine-

cosine Fourier functions. To address the issue of over-dispersion in the data, the negative binomial 

regression model was employed in this study. 

3.5. Results 

3.5.1. Model building 

The study examined nested models that included various components such as the baseline trend, 

seasonal control by applying sine and cosine functions, intervention effect (indoor residue spray 

or IRS), and climate variables (lagged and non-lagged).  
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The nested models used in this study are as follows: 

Model-0: This model includes only the intercept term, serving as a baseline reference for 

comparison, equation 26. 

Model-1: In addition to the intercept, this model includes a baseline trend over time, allowing for 

the analysis of temporal patterns in malaria incidence, equation 27. 

Model-2: Along with the intercept and baseline trend, this model incorporates seasonality control 

by applying sine and cosine functions, capturing the cyclic nature of malaria incidence, equation 

28. 

Model-3: Building upon the previous models, this model introduces an intervention variable to 

evaluate the impact of indoor residue spray (IRS) while controlling for the baseline trend and 

seasonality, equation 29. 

Model-4: In addition to the intercept, baseline trend, seasonality, and intervention variable, this 

model incorporates climate variables that are known to influence malaria. It assesses the direct 

association between these climate factors and malaria incidence, equation 30. 

Model-5: Extending Model-4, this model includes lagged effects of climate variables. The 

selection of lagged terms is based on the findings from Chapter 2, indicating that the lagged effects 

peak at lag-0 and remain significant up to lag-3, diminishing thereafter. Thus, all climate variables 

in Model-5 have lags up to lag-2, representing the influence of previous climate experiences over 

the past two months, equation 31. 

By comparing these nested models, the study aimed to determine the most influential factors and 

their effects on malaria incidence, providing valuable insights into the dynamics of malaria 

transmission and the impact of interventions and climate variables. 

Mode-0:  𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼  

Equation 26 

Mode-1:  𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠  

Equation 27 
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Mode-2: 𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 + 𝐵2 ∗ sin (
2𝜋𝑡

𝑇
) + 𝐵3 ∗ cos (

2𝜋𝑡

𝑇
) 

Equation 28 

Model-3: 𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ + 𝐵2 ∗ sin (
2𝜋𝑡

𝑇
) + 𝐵3 ∗ cos (

2𝜋𝑡

𝑇
) +  𝐵4 ∗

𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

Equation 29 

Model-4: 𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ + 𝐵2 ∗ sin (
2𝜋𝑡

𝑇
) + 𝐵3 ∗ cos (

2𝜋𝑡

𝑇
) +  𝐵4 ∗

𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + ∑ 𝐵5̇t
∗ 𝑐𝑙imate variables  

Equation 30 

Model-5: 𝑙𝑜 𝑔(𝜇𝑡 ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ + 𝐵2 ∗ sin (
2𝜋𝑡

𝑇
) + 𝐵3 ∗ cos (

2𝜋𝑡

𝑇
) +  𝐵4 ∗

𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + ∑ 𝐵5̇t
∗ 𝑙𝑎𝑔𝑔𝑒𝑑 𝑐𝑙imate variables  

Equation 31 

3.5.2. Model selection 

Model selection was based on AIC from the all six models. As indicated in Table 4, model-5 has 

smallest AIC among all candidate models. This model has baseline trend, seasonality control (sine-

cosine functions), intervention (IRS) and lagged climate variables.  
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Table 4 Comparison of AIC , BIC and QIC for candidate models 

Model-ID Model description  AIC  BIC QIC 

Model 0 Intercept only 1417.165 1423.824 177540.5 

Model 1 Intercept and trend 1419.314 1428.192 183929.6 

Model 2 Intercept, trend and seasonality 1399.986 1413.303 139525.5 

Model 3 

Intercept, trend, seasonality and 

intervention 1379.029 1394.565 

 

98395.56 

Model 4 

Intercept, trend, seasonality, 

intervention and  non-lagged climate 

variables  1385.953 1408.148 

 

 

110041.4 

Model 5 Intercept, trend, seasonality, 

intervention and  lagged climate 

variables 

1373.802 1409.314 92346.27 

 

Examination of model residuals through ACF plots in Figure 8 also indicates pictorial diminishing 

of autocorrelation associated with incorporation of lagged climate variables in model-5. These 

finding indicate the importance of incorporating delayed effects of climate when modelling malaria 

incidence. 
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(a) Model-0 

 

(b) Model-1 

 

(d) Model-2 

 

(e) Model-3 

 

(e) Model-4 

 

 

(f) Model-5 

 

Figure 8 ACF plots of model residues 
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3.5.3. Model coefficients 

The model coefficients for Model 5 are displayed in Table 5, and confidence intervals were 

examined to assess the significance of these coefficients by checking if they contain a zero effect. 

While the coefficients for rainfall did not show statistical significance, the study considered its 

known impact on vector breeding and disease transmission. The coefficients for humidity at lag-1 

and lag-2 exhibited statistically significant positive associations with malaria incidence, 

suggesting that higher humidity levels in previous time periods may increase the likelihood of 

malaria. Similarly, the coefficients for maximum temperature at lag-1 was statistically significant, 

indicating that higher temperature levels in the previous month may also contribute to an increased 

likelihood of malaria. These findings align with results observed when investigating the 

relationships between these climate factors and disease transmission dynamics in the previous 

chapter. 

Table 5 Model coefficients for lagged climate variable model 

Coefficients: Estimate Std.Error CI(lower) CI(upper) 

(Intercept) 2.58 2.093205 -1.527316 6.67789 

beta_1 0.0377 0.028519 -0.018176 0.09361 

sine -0.442 0.219964 -0.872681 -0.01044 

cosine 0.196 0.156435 -0.11074 0.50247 

Trend 0.00455 0.002494 -0.000339 0.00944 

Intervention -0.647 0.106034 -0.854488 -0.43884 

Rainfall lag-0 -0.0000358 0.000589 -0.001191 0.00112 

Rainfall lag-1 -0.000177 0.000606 -0.001365 0.00101 

Rainfall lag-2 0.000123 0.000582 -0.001018 0.00126 

Humidity lag-0 0.00432 0.007054 -0.009506 0.01815 

Humidity lag-1 0.0322 0.007399 0.017663 0.04667 

Humidity lag-2 0.0178 0.00716 0.003771 0.03184 

Maximum temp lag-0 0.0069 0.026026 -0.04411 0.05791 

Maximum temp lag-1 0.0718 0.027937 0.017085 0.1266 

Maximum temp lag-2 0.0377 0.027803 -0.016798 0.09219 
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3.5.4. Impact of lagged climate effect in modeling  

The impact of indoor residue spray (IRS) intervention on malaria incidence was assessed using 

different candidate models, and the results are presented in Table 6. All models demonstrated a 

reduction in malaria incidence associated with IRS intervention. However, the magnitude of the 

impact varied across the different models. Notably, when climate variables were incorporated in 

models 4 and 5, the estimated impact changed from 48.7% to 46.93% and 47.62%, respectively. 

These findings highlight the importance of considering climate factors when modeling malaria 

incidence, as omitting them can potentially influence estimates of the true impact of interventions.  

Table 6 Model parameters (exponentiated) 

Model Intercept Trend  Intervention AIC Estimated % reduction of cases 

Model 3 2078.18604 1.007421 0.512739 1379.029 48.73% 

Model 4 7.383166 0.006607004 0.5306841 1385.953 46.93% 

Model 5 13.135119 1.0045596 0.5237897 1373.802 47.62% 

 

3.5.5. Impact of indoor residue spray (IRS) malaria intervention in Mangochi 

The study utilized model-5 to evaluate the impact of IRS on malaria cases, considering the delayed 

effects of climate factors. The findings revealed a significant reduction of malaria cases by 48% 

(CI: 46%-49%) in the general population due to IRS intervention. However, when analyzing the 

data based on different age groups and accounting for lagged effects of climate factors, varying 

impacts were observed, as presented in Table 7. Notably, the under-5 age category exhibited a 

substantial reduction in malaria cases, with IRS resulting in a 51% decrease (CI: 49%-54%), while 

the over-5 category experienced a lower reduction of 44% (CI: 43%-47%). 
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Table 7 Model estimates for impact by age category 

    95% CI 

Age group Estimated % reduction of cases  Lower Upper 

All population 48% 46% 49% 

Under - 5 51% 49% 54% 

Over-5 44% 43% 47% 

 

The graphs in Figure 9 below shows long time trends that hypothesize expected scenario under 

which an intervention had not taken place and the trend continues unchanged (‘expected’ trend, in 

the absence of the intervention, given the pre-existing trend) which is referred to as the 

‘counterfactual’. The counter factual is obtained by removing intervention effect so that the 

historical trend is allowed to continue without interruption beyond in the post intervention period 

as shown below.  

 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑓𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑀𝑜𝑑𝑒𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑒𝑥𝑝(𝐵2∗𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)
 

Equation 31 

In all age groups the counter factual trend depicts high malaria cases compared to what is observed 

and predicted by the model as shown in Figure 9a-c. 
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(a)  

 

(B) 

 

 

(C) 

 

 

 

Figure 9 Graph showing predicted monthly incidence against counterfactual climate adjusted 

for climate factors 

3.6. Discussion 

The findings of this study align with the existing literature on the effectiveness of interrupted time 

series (ITS) designs to evaluate the effectiveness of interventions in real-world settings where 

randomized controlled trials (RCTs) may not be feasible or practical (Evangelos et al., 2015). The 

study further showed that incorporating lagged climate effects in ITS models improved the 

accuracy of modelling impact of IRS interventions. The study also demonstrated that lagged 

climate conditions can significantly impact disease transmission dynamics and, therefore, should 

be accounted for when evaluating impact of an intervention such as IRS. 
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Generally, the study indicates a significant reduction in malaria cases associated with IRS 

intervention. Furthermore, it has been demonstrated that the delayed effects of climate conditions 

significantly influenced malaria incidence during specific periods. Therefore, when evaluating the 

impact of interventions, it is crucial to thoroughly consider and account for the influence of lagged 

climate conditions. After accounting for lagged climate conditions, the study revealed a notable 

reduction in malaria incidence by 48% (CI: 46%-49%) associated with the implementation of 

Indoor Residue Spray (IRS) in the general population. However, when analyzing the data based 

on different age groups, the study found varying impacts. The under-5 age category exhibited a 

significant reduction in malaria cases (51%, CI: 49%-54%), whereas the over-5 category 

experienced a comparatively lower reduction (44%, CI: 43%-47%). The finding is important 

considering previous research that has highlighted the vulnerability of young children to severe 

malaria and the potential benefits of targeted interventions for this age group such as a study by 

Kazembe et al. (2015). The study by McLean et al. (2018) also reported differential impacts of 

community health worker (CHW) programs on malaria incidence among different population 

groups. 

The analysis also revealed a distinct counterfactual trend, demonstrating a higher incidence of 

malaria cases compared to what was observed and predicted by the model. The substantial 

reduction of 48% (CI: 46%-49%) associated with the implementation of Indoor Residue Spray 

(IRS) supports the efficacy of this intervention strategy in combating malaria. 

3.7. Limitations and recommendations 

The analysis in this study did not account for socio-economic factors and other potential 

confounders, such as local mosquito control programs, which can also influence malaria 

transmission. Unfortunately, these data were not available for inclusion in the analysis. 

Furthermore, it should be noted that a time-varying population offset was not used because 

TScount R package did not support the implementation of a variable offset at the time of this study. 

However, it is important to mention that the influence of population changes over the monthly time 

period is expected to be minimal in this study, as there were negligible population variations 

observed between the months. 
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3.8. Conclusion 

In conclusion, the study highlights the significant impact of IRS intervention on reducing malaria 

incidence in Malawi. The inclusion of climate variables and accounting for lagged effects 

enhanced the accuracy of the predictions and provided a comprehensive understanding of the 

intervention's effects. The findings support the continued implementation and scale-up of IRS as 

a population-level intervention for malaria prevention and control, particularly in areas with high 

malaria burden. Furthermore, the differential impact observed among age groups emphasizes the 

importance of targeting interventions to specific populations, such as young children who are at 

higher risk of malaria. These findings contribute to the designing effective malaria control 

programs that consider both intervention strategies and environmental factors. 
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CHAPTER 4 

CONCLUSION 

Overall, the findings of this study contribute to the growing body of literature on the relationship 

between climatic factors and malaria incidence. The study confirms the presence of a nonlinear 

relationship between rainfall, humidity, maximum temperature, and the risk of malaria, consistent 

with previous research. These findings align with studies that emphasize the role of climate 

variables in the transmission dynamics of malaria. 

The study highlights the significance of rainfall in creating breeding grounds for mosquito vectors 

and increasing the prevalence of malaria cases. This finding is supported by previous research, 

indicating that higher rainfall is associated with a higher risk of malaria. The study also underscores 

the impact of humidity on mosquito populations and subsequent malaria transmission, in line with 

previous studies highlighting the positive association between humidity and malaria risk. 

Similarly, the study demonstrates the importance of temperature in shaping the dynamics of 

malaria transmission, particularly in relation to mosquito larval development and survival. 

The study incorporated lagged effects, considering that the impact of climatic variables persists 

over multiple time intervals. The findings align with previous research emphasizing the sensitivity 

of malaria and other diseases to weather and climate conditions. The study's narrow confidence 

intervals provide a higher level of certainty in the association between climatic factors and malaria 

incidence, further supporting the robustness of the findings. 

However, the study has limitations. It focused on a specific geographical region, limiting the 

generalizability of the results. The use of long monthly lags may affect the accuracy of the analysis, 

and future research could explore the effect of shorter lags to capture more immediate associations. 

The study did not account for important socio-economic factors and potential confounders, such 

as local mosquito control programs, which can influence malaria transmission. Incorporating these 

variables in future research would provide a more comprehensive understanding of the complex 

interplay between climate, socio-economic factors, and malaria transmission dynamics. 
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In conclusion, the study contributes to the understanding of the nonlinear relationship between 

climatic factors and malaria incidence. The findings have implications for malaria control and 

prevention strategies, emphasizing the importance of climate monitoring and forecasting in 

targeted interventions. By considering the impact of climatic factors, public health authorities can 

develop proactive measures to mitigate the spread of malaria, particularly in regions prone to 

extreme weather events. Continued research in this field will further enhance efforts to reduce the 

burden of malaria by unraveling the complex interactions between climate and malaria 

transmission dynamics
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This manuscript presents a study that aimed to analyze the relationship between 

climate factors and malaria incidence. The research utilized monthly malaria 

incidence data from the national malaria control program and climate data from 

the Department of Meteorological Services and Climate Change in Mangochi 

district, Malawi. The analysis employed a distributed lag non-linear model to 

examine the nature of the relationship between climate variables and malaria 

incidence. The results revealed an immediate peak in malaria risk in the same 

month following extreme weather conditions, highlighting the importance of 

short-term effects. In this study, the risk of malaria immediately doubles with 

extreme rains and humidity compared to risk at average climate conditions. The 

effects continued for up to two months but gradually subsided thereafter. These 

findings underscore the significance of considering previous climate conditions 

in predicting current and future malaria incidence. The study emphasizes the 

importance of understanding the relationship between climate and malaria 

incidence for informing targeted interventions, establishing malaria early 

warning systems, and mitigating the effects of climate change on malaria 

transmission. Incorporating the knowledge gained from this research into 

malaria programming and control efforts can enhance the effectiveness of 

interventions and contribute to proactive strategies for reducing the burden of 

malaria in the context of a changing climate. 

Key words 

 

DLNM 

 

 

1. Introduction 

Malaria transmission is influenced by natural 

risk factors such as rainfall patterns, 

temperature, and humidity, which affect the 

spread of the malaria parasite (Ayansina, 

Isioma, Consolato, & Oluwatoyin, 2020). 

Increased rainfall leads to the proliferation of 

mosquito breeding sites, thereby increasing 

the transmission of malaria parasites among 

individuals. Similarly, temperature and 

humidity impact malaria transmission by 

regulating the rate of mosquito larvae 

development and mosquito survival rates 

(Gunda, Chimbar, Shamu, Sartorius, & 

Mukaratin, 2017). Studies, such as the one 

conducted by Gunda et al. (2017) in rural 

Gwanda, Zimbabwe, have established the 

link between climate variability and vector-

borne diseases like malaria. Climate 

variability has the potential to either facilitate 

or hinder efforts to control the disease 

(Gunda, Chimbar, Shamu, Sartorius, & 

Mukaratin, 2017). 
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Understanding the variation in malaria 

incidence due to climate variability, both 

present and recent past, is crucial for planning 

future malaria control programs (Gunda, 

Chimbar, Shamu, Sartorius, & Mukaratin, 

2017). It enables the identification of optimal 

timing for implementing malaria 

interventions, taking into account the impact 

of previous climate conditions. This 

understanding serves as a valuable tool for 

program implementers, allowing them to 

incorporate past climate experiences into 

decision-making processes and enhance the 

effectiveness of malaria control initiatives. 

Furthermore, understanding the relationship 

between malaria incidence and lagged 

climatic conditions contributes to the 

development of robust malaria early warning 

systems. 

Examining the influence of past climate 

experiences on malaria transmission is also 

vital for understanding local epidemiological 

shifts, some of which can be attributed to 

climate change. Future climate projections 

indicate a general warming trend, particularly 

in southern Malawi and over the lake 

(Vincent & Katharine, 2020). However, 

different climate models provide varying 

predictions regarding rainfall patterns.  

These changing climatic conditions highlight 

the importance of considering the complex 

interactions between climate factors and 

malaria transmission dynamics. The 

understanding of local climate patterns and 

its potential impact to malaria is crucial for 

developing effective strategies to mitigate the 

disease and adapt to future climate 

challenges. 

Previous studies however commonly 

overlook the existence of lagged and non-

linear relationship between climate 

conditions and malaria incidence. This study 

utilized methods that capture lagged and non-

linear relationships more accurately. By 

applying appropriate methodologies to 

account for delayed climate effects, this study 

provides a more comprehensive and accurate 

analysis of the influence of climate on 

malaria transmission in the Mangochi 

district. 

2. Distributed lag non-linear model 

The distributed lag non-linear model 

(DLNM) is a methodology used to model the 

non-linear and delayed effects of 

environmental stressors or events. It 

incorporates a combination of past exposures 

over several time lags to explain the impact 

of the stressors at a given time. The DLNM is 

based on a bi-dimensional space of functions 

called "cross-basis" that describes the shape 

of the relationship along the predictor (e.g., 

temperature) and its lag dimension. 

Equation 1: Distributed Lag Model (DLM) 

y𝑡 = α + B0x1 + B1xt−1+..+BLxt−L+u 

In the DLM, y𝑡 represents the response 

variable at time t, x is the regressor, and 

BLrepresents the weight of the respective lag 

L. The coefficients BL can be interpreted as 

the effect of the past exposure on the present 

moment response or the effect of the current 

exposure on the future response. 

Equation 2: Dependency on Exposure 

History 

S(x, t) = ∫ Xt−lw(L) ⅆL
L

L0

 

Equation 2 describes the dependency of the 

response on exposure history. S(x,t) 

represents the exposure-response 
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relationship at time t, Xt−l is the lagged 

exposure, and w(L) is the weighting basis 

function applied to constrain the lag 

coefficients. The integral sums up the effect 

of exposures over different time lags. 

Equation 3: Cross-Basis Function in DLNM 

S(xt, n) = qrn = wt
Tn 

In the DLNM, the cross-basis function 

represents the non-linear relationship 

between the predictor variable x and the 

response variable y over time. The function 

S(xt, n) is a linear combination of the basis 

functions f(x) and w(l), which describe the 

exposure-response structure along x and the 

lag-response structure along l, respectively. 

Equation 4: DLNM Equation 

g(ut) = α + ∑ sj(xxj; nj)

J

j=1

+ ∑ γkZtk

k

k=1

 

The DLNM equation incorporates the cross-

basis function sj, which denotes smoothed 

relationships between the predictor variables 

xxj  and the linear predictor. The model 

assumes that the response variable Y follows 

a distribution from the exponential family. 

Other predictor variables Ztk with linear 

effects are also included, and the parameters 

α, nj, and γk are estimated. 

These equations capture the key concepts and 

relationships within the distributed lag non-

linear model methodology. They provide a 

basis for understanding the modeling 

approach and how it incorporates the non-

linear and delayed effects of environmental 

stressors. 

 

3. Application: analysis of results 

A distributed lag non-linear model (DLNM) 

was applied to analyze the relationship 

between climate factors and malaria 

incidence in Mangochi district. The model 

used monthly malaria cases as the dependent 

variable and climate variables, such as 

temperature, rainfall, and relative humidity, 

as the independent variables. 

The equation used in the DLNM was: 

𝑌𝑡~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇𝑡) 

𝑙𝑜𝑔(𝑢𝑡) = 𝛼 + ∑ 𝑆𝑗(𝑥𝑡,𝑗 , 𝐵𝑗)
𝐽

𝑗=1
+

∑ 𝜓𝑘(𝑍𝑡𝑘)𝐾
𝑘=1 + 𝑠(𝑡𝑖𝑚𝑒, 𝑝) +

𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  

 The dependent variable, 𝑢𝑡, 

represents the expected malaria cases 

on monthly basis. 

 The independent variables are the 

climate factors, including monthly 

temperature, monthly rainfall, and 

monthly relative humidity. 

 NegBinomial is the negative binomial 

distribution used to account for 

overdispersion in the data. 

 α is the intercept term. 

 𝑆𝑗(𝑥𝑡,𝑗, 𝐵𝑗) captures the non-linear 

effects of climate factors at different 

lag months. 

 𝜓𝑘(𝑧𝑡𝑘) represents the linear effects 

of other predictors, such as the IRS 

intervention. 

 𝑆𝑗(𝑥𝑡,𝑗, 𝐵𝑗) is a natural cubic spline 

used to control for seasonality in the 

malaria time series. 

 log(population) is the offset term that 

adjusts for changes in population size 

over time. 
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By applying this model and estimating the 

parameters, the researchers aimed to 

understand the relationship between climate 

factors and malaria incidence in Mangochi 

district, considering the non-linear effects, 

delayed effects, and potential confounding 

factors. 

3.1.Distributed Lag Non-Linear Model 

building 

The correlation between climate variables 

was assed using Pearson correlation to 

identify climate variables that exhibit 

excessive collinearity. The correlation 

matrix, as shown in Table 2, revealed positive 

correlations among the climate variables. 

Specifically, the maximum and minimum 

temperatures exhibited a correlation 

coefficient of 0.81, indicating a strong 

positive relationship. Similarly, there was a 

positive correlation between the minimum 

temperature and rainfall, with a correlation 

coefficient of 0.54. Furthermore, the 

humidity and rainfall variables showed a 

positive correlation, with a correlation 

coefficient of 0.51. 

These findings suggested some degree of 

collinearity among climate variables which 

pose challenges in the statistical analysis as it 

can lead to multicollinearity.  

Table 2 Correlation matrix of climate 

variables 

Climate 

variables 

Malaria 

Total Rain Humidity 

Max 

Tem 

Min 

Tem 

Malaria 
Total 1.00 0.112 0.567 -0.284 -0.078 

Rain 0.112 1.00 0.512 0.133 0.536 

Humidity 0.567 0.512 1.00 -0.377 0.122 

Maximum 

Temp -0.284 0.132 -0.377 1.00 0.813 
Minimum 

Temp -0.078 0.537 0.122 0.811 1.00 

 

In order to assess the impact of collinearity in 

the final model, the Variance Inflation Factor 

(VIF) was applied. The VIF is a statistical 

index that quantifies the extent to which the 

variance of the estimated regression 

coefficients is increased due to collinearity 

among the independent variables. The 

researcher followed the recommendation by 

Qinqin et al. (2018), who suggested 

removing variables with a VIF above 5 to 

minimize the impact of collinearity on model 

sensitivity. Following VIF analysis, variables 

with high VIF were dropped and the resultant 

model had reduced variance inflation factor 

among all climate variables. 

3.2. Exposure Lag Response relationship 

In the model selection process, a variety of 

linear and non-linear functions in the 

exposure-lag dimensions for climate 

variables were considered. A total of 18 

different model candidates were evaluated, 

each with different specifications in the 

exposure-lag dimensions. 

To determine the most appropriate model 

specifications, the Akaike Information 

Criterion (AIC) was used. The AIC provides 

a measure of the model's goodness of fit 

while considering its complexity. By 

comparing the AIC values across different 

functions in the exposure-lag dimensions for 

climate variables, the researchers identified 

the model specifications that yielded lower 

AIC values. 

The examination of AIC revealed that using 

natural cubic splines with knots placed at 

equal intervals in the exposure dimension and 

a polynomial in the lag response dimension 

resulted in the lowest AIC values.  

Backward variable selection was then 

performed to further refine the model. This 

process involved generating basis variables 

based on the selected model specifications 

and incorporating them into the final model. 
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The backward variable selection method 

demonstrated improvement in the model 

when including these climate basis variables. 

To control for seasonality, natural cubic 

splines were employed. Additionally, the 

model included the predictor of Indoor 

Residual Spraying (IRS) intervention period. 

3.3.Lagged effects of rainfall 

Figure 5a illustrates a nonlinear relationship 

between precipitation and malaria incidence. 

The study found that increasing precipitation 

compared to its average is associated with a 

higher risk of malaria, reaching its peak at lag 

0 when monthly rainfall reaches a maximum 

of 541mm. The relative risk (RR) at this point 

is 2.4314162, with a 95% confidence interval 

(CI) of (2.0554548, 2.8761443).  

The predicted effects of rainfall on malaria 

incidence remain consistent across all three 

lag periods and exhibit a narrow confidence 

interval, as depicted in Figure 5d. Figure 5b 

which shows a heat map, representing 

relative risk, visually shows a high risk 

associated with increasing rainfall, peaking at 

lag-0 (bright red). Additionally, the study 

identified delayed but diminishing effects of 

climate conditions from 0-3 months lag, 

indicating that the impact of climatic 

variables persists over multiple time 

intervals. 

Figure 5 3D relationship, relative risk and 

lag specific effects between malaria cases 

and rainfall 

3.4.Lagged effects of humidity 

Figure 6a depicts a nonlinear relationship 

between humidity and malaria incidence. The 

study revealed that increasing humidity 

compared to its average is associated with a 

higher relative risk, peaking at lag 0 when 

relative humidity reaches a maximum of 84. 

At this point, the relative risk (RR) is 

2.0537649, with a 95% confidence interval 

(CI) of (1.9435101, 2.1702744). 

The effects of humidity on malaria incidence 

exhibit a narrow confidence interval and are 

sustained up to lag-2, as shown in Figure 6d. 

Figure 6b which shows risk heat map, 

representing relative risk, visually illustrates 

a high risk associated with increasing 

humidity, similarly reaching its peak at lag-0. 
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Figure 6 3D relationship, relative risk and 

lag specific effects between malaria cases 

and humidity 

3.5.Lagged effects of temperature 

Figure 7a depicts a nonlinear exposure lag 

response relationship between maximum 

temperature and malaria cases. The analysis 

revealed that increasing temperature 

compared to its average is associated with an 

elevated risk of malaria, with the risk peaking 

at lag 0 when the temperature reaches a 

maximum of 34 degrees Celsius. At this 

point, the relative risk (RR) is 1.3907299, 

with a 95% confidence interval (CI) of 

(1.3523290, 1.4302212). 

The effects of temperature on malaria cases 

are sustained up to lag 2, as shown in Figure 

7d, and the predicted effects exhibit narrow 

confidence intervals across all lags. Figure 7b 

which shows risk heat map, representing 

relative risk, visually indicates a high risk 

associated with increasing maximum 

temperature, reaching its peak at lag-0. 

 

 

 

 

Figure 7 3D relationship, relative risk and 

lag specific effects between malaria cases 

and maximum temperature 

4. Discussion and Conclusion 

The findings in this study are consistent with 

previous reports such as Gunda et al. (2017), 

which demonstrated a significant association 

between malaria incidence and precipitation 

at specific lag periods. Similar to the current 

study, Gunda et al. found that precipitation (at 

1- and 3-month lags) and mean temperature 

(at 1- and 2-month lags) were significantly 

associated with malaria incidence at specific 

lag periods. The distributed lag non-linear 

model (DLNM) analysis in this study also 

suggests present high-risk period based on 

past 3-months rainfall conditions. 

Specifically, the results in this study highlight 

a peak in malaria risk which doubled 

immediately following extreme rainfall 

conditions, aligning with Florence et al.'s 

(2019) report linking climate extreme events 

with malaria outbreaks. The effect of rainfall 

continued to be sustained for a period of 3 

months and diminishes beyond 3 months. 

This study, in conjunction with previous 

research, provide evidence that changes in 

rainfall pattern could contribute to the 

creation of conditions conducive to vector 

breeding, which could explain the observed 

shifts in malaria epidemiology in certain 
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areas of Malawi. A study by Yoonhee et al. 

(2019) reported that global and local climate 

change can alter the spatial and temporal 

distribution of malaria, increasing 

opportunities for transmission in traditionally 

non-malarious areas. 

The impact of humidity on malaria incidence 

has also been extensively studied, and the 

findings of this study reaffirm the positive 

association between humidity and malaria 

risk. The observed peak in malaria risk which 

doubles immediately following highest 

recorded relative humidity, supports the 

understanding that humidity plays a crucial 

role in influencing mosquito populations and 

subsequent malaria transmission. This result 

aligns with Philippe et al.'s (1995) report, 

which states that higher humidity levels 

prolong the lifespan of mosquitoes, enabling 

them to infect more individuals. 

Similarly, the nonlinear relationship between 

temperature and malaria cases is consistent 

with previous research that has established a 

connection between the disease and 

temperature conditions. The observed peak in 

malaria risk following high temperatures 

emphasizes the importance of temperature in 

shaping the dynamics of malaria 

transmission. As reported by Gunda et al. 

(2017), temperature affects malaria 

transmission by regulating the rate of 

development of mosquito larvae, which in 

turn influences mosquito survival rates. Thus, 

considering temperature as a crucial factor in 

understanding and addressing malaria 

transmission dynamics is essential. 

In conclusion, the findings of this study 

contribute to the growing body of literature 

on the relationship between climatic factors 

and malaria incidence. The results 

demonstrate a delayed and nonlinear 

relationship between climate conditions and 

the risk of malaria, consistent with previous 

research. The study found that precipitation 

and mean temperature at specific lag periods 

were significantly associated with malaria 

incidence. There was a peak in malaria risk 

following extreme weather conditions, 

highlighting the importance of short-term 

effects. The positive association between 

increasing rainfall and malaria risk confirms 

the influence of precipitation on mosquito 

breeding and the prevalence of malaria cases. 

Humidity was also found to be positively 

associated with malaria risk, influencing 

mosquito populations. Similarly, high 

temperatures were associated with an 

increased risk of malaria. The observed 

delayed effects of climate factors underscore 

the significance of climate conditions in 

malaria distribution and transmission. 

Overall, these findings enhance our 

understanding of the impact of climatic 

variables on malaria epidemiology.
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This objective focused on the evaluation of the impact of Indoor Residue Spray 

(IRS) intervention on malaria incidence in Mangochi district, Malawi, using a 

segmented time series regression. The study incorporated lagged climate 

conditions to improve the modeling and evaluation of IRS intervention. The 

analysis revealed a significant reduction in malaria cases associated with the 

implementation of IRS, with a notable overall decrease of 48% (CI: 46%-49%) 

in the general population. Different age groups exhibited varying impacts, with 

the under-5 age category experiencing a significant reduction of 51% (CI: 49%-

54%). These findings supported the efficacy of IRS as a malaria prevention 

strategy and highlighted the importance of considering lagged climate 

conditions in the evaluation of interventions. The study contributed to the 

literature on interrupted time series designs and their application in evaluating 

population-level health interventions. 
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4. Introduction 

This study aimed to evaluate the impact of 

Indoor Residue Spray (IRS) intervention on 

malaria incidence in Mangochi district, 

Malawi, using a segmented time series 

regression analysis. An interrupted time 

series (ITS) was employed as an alternative 

to randomized controlled trials (RCTs) in 

assessing the effectiveness of interventions in 

real-world settings. This approach was 

particularly useful for population-level 

interventions such as IRS, where RCTs were 

impractical and costly in resource-

constrained settings. These designs allowed 

for the analysis of observational data in the 

absence of full randomization or a case-

control design. 

Segmented time series regression analysis 

was particularly well-suited for evaluating 

interventions with clearly defined 

implementation periods. By distinguishing 

the effects of interventions from secular 

trends, this approach provided a robust 

framework for assessing the impact of IRS 

interventions on malaria incidence. Previous 

studies, such as Monica et al. (2014) and 

Gebski et al. (2012), had demonstrated the 

effectiveness of segmented regression 

analysis in various healthcare settings. 

In the context of malaria control, segmented 

time series regression had been used to 

evaluate the effects of interventions, such as 

community health worker programs 

(McLean et al., 2018). These studies had 

shown promising results in reducing malaria 

incidence and had highlighted the potential of 

this analytical approach. 

The study aimed at assessing the impact of 

IRS intervention on malaria incidence in 
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Mangochi district, Malawi. Furthermore, the 

study incorporated lagged and non-linear 

climate effects in the analysis to account for 

the influence of climate conditions on disease 

transmission dynamics. By applying 

segmented time series regression, the study 

estimated the causal effects of the IRS 

intervention and provide an opportunity to 

forecast potential future epidemics based on 

past climate experiences and the 

implementation of the intervention. 

5. Application: analysis of results 

This study utilized a segmented time series 

regression analysis to assess the effectiveness 

of the indoor residue spray (IRS) malaria 

intervention, which was initiated in 

November 2019 in Mangochi district. The 

segmented time series approach allowed for 

the evaluation of the intervention's impact on 

malaria incidence and the detection of any 

notable changes in the malaria trends after the 

intervention implementation.  

The model frame is expressed as follows. Let 

𝑌𝑡 be monthly malaria cases, then  

𝑌𝑡~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇𝑡) 

𝑙𝑜 𝑔(𝑢t ) = 𝛼 + 𝐵1 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 +

 𝐵2 ∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐵3 ∗ 𝑠𝑖𝑛 (
2𝜋𝑡

𝑇
) +

𝐵4 ∗ 𝑐𝑜𝑠 (
2𝜋𝑡

𝑇
) + ∑ 𝐵𝑡 ∗ 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

In the model above, 𝑌𝑡 is number of malaria 

cases, 𝑙𝑜𝑔(𝑢𝑡) is log-link function, 𝛼 is 

baseline intercept, 𝐵1 is a coefficient 

representing a baseline trend, 𝐵2 is 

coefficient representing the effect of 

intervention, 𝐵3𝑎𝑛𝑑 𝐵4 are coefficients for 

sine and cosine functions to control for 

malaria seasonality. As evident from the 

findings of this study, it was observed that 

climate factors, including rainfall, 

temperature, and humidity, exhibited delayed 

effects on malaria incidence. Therefore, 

climate variables were included in the model 

represented by ∑ 𝐵 𝑡 . To address the issue of 

over-dispersion in the data, the negative 

binomial regression model was employed in 

this study. 

4.1.Model building 

The study examined nested models that 

included various components such as the 

baseline trend, seasonal control using sine 

and cosine functions, intervention (indoor 

residue spray or IRS), and climate variables 

(lagged and non-lagged).  

The nested models used in this study are as 

follows: 

Model-0: This model includes only the 

intercept term, serving as a baseline reference 

for comparison, equation 3.2. 

Model-1: In addition to the intercept, this 

model includes a baseline trend over time, 

allowing for the analysis of temporal patterns 

in malaria incidence 

Model-2: Along with the intercept and 

baseline trend, this model incorporates 

seasonality control using sine and cosine 

waves, capturing the cyclic nature of malaria 

incidence 

Model-3: Building upon the previous 

models, this model introduces an intervention 

variable to evaluate the impact of indoor 

residue spray (IRS) while controlling for the 

baseline trend and seasonality 

Model-4: In addition to the intercept, 

baseline trend, seasonality, and intervention 

variable, this model incorporates climate 

variables that are known to influence malaria. 

It assesses the direct association between 

these climate factors and malaria incidence 



76 | P a g e  
 

Model-5: Extending Model-4, this model 

includes lagged effects of climate variables. 

The selection of lagged terms is based on the 

findings from Chapter 3, indicating that the 

lagged effects peak at lag-0 and remain 

significant up to lag-2, diminishing 

thereafter. Thus, all climate variables in 

Model-5 have lags up to lag-2, representing 

the influence of previous climate experiences 

over the past two months. 

By comparing these nested models, the study 

aimed to determine the most influential 

factors and their effects on malaria incidence, 

providing valuable insights into the dynamics 

of malaria transmission and the impact of 

interventions and climate variables. 

Model selection was based on comparing the 

AIC from the all six models. The results 

showed that model-5 has smallest AIC 

among all candidate models. This model has 

baseline trend, seasonality control (sine-

cosine functions), intervention (IRS) and 

lagged climate variables.  

4.2.Impact of lagged climate effect in 

modeling  

The impact of indoor residue spray (IRS) 

intervention on malaria incidence was 

assessed using different candidate models, 

and the results are presented in Table 6. All 

models demonstrated a reduction in malaria 

incidence associated with IRS intervention. 

However, the magnitude of the impact varied 

across the different models. Notably, when 

climate variables were incorporated in 

models 4 and 5, the estimated impact 

changed from 48.7% to 46.93% and 47.62%, 

respectively.  

Table 6 Model parameters (exponentiated) 

 

5. Impact of indoor residue spray (IRS) 

malaria intervention in Mangochi 

The study finally utilized model-5 to evaluate 

the impact of IRS on malaria cases, 

considering the delayed effects of climate 

factors. The findings revealed a significant 

reduction of malaria cases by 48% (CI: 46%-

49%) in the general population due to IRS 

intervention. However, when analyzing the 

data based on different age groups and 

accounting for lagged effects of climate 

factors, varying impacts were observed, as 

presented in Table 7. Notably, the under-5 age 

category exhibited a substantial reduction in 

malaria cases, with IRS resulting in a 51% 

decrease (CI: 49%-54%), while the over-5 

category experienced a lower reduction of 

44% (CI: 47%-43%). 

Table 7 Model estimates for impact by age 

category  

 

The graphs in figure 9 below shows long time 

trends that hypothesize expected scenario 

under which an intervention had not taken 

place and the trend continues unchanged 

(‘expected’ trend, in the absence of the 

intervention, given the pre-existing trend) 

which is referred to as the ‘counterfactual’. In 

all age groups the counter factual trend 

depicts high malaria cases compared to what 

is observed and predicted by the model as 

shown in figure 9a-c. 

Model Intercept Trend  Intervention AIC Estimated % reduction  of cases 

Model 3 2078.18604 1.007421 0.512739 1379.029 48.73% 

Model 4 7.383166 0.006607004 0.5306841 1385.953 46.93% 

Model 5 13.135119 1.0045596 0.5237897 1373.802 47.62% 

 

    95% CI 

Age group Estimated % reduction of cases  Lower Upper 

All population 48% 46% 49% 

Under - 5 51% 49% 54% 

Over-5 44% 43% 47% 
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(a)  

 

(B) 

 

 

(C) 

 

 

 

Figure 9 Graph showing predicted monthly 

incidence against counterfactual climate un 

adjusted for climate factors 

6. Discussion and Conclusion 

The findings of this study align with the 

existing literature on the effectiveness of 

interrupted time series (ITS) designs to 

evaluate the effectiveness of interventions in 

real-world settings where randomized 

controlled trials (RCTs) may not be feasible 

or practical (Evangelos et al., 2015). The 

study further showed that incorporating 

lagged climate effects in ITS models 

improved the accuracy of modelling impact 

of IRS interventions. The study also 

demonstrated that lagged climate conditions 

can significantly impact disease transmission 

dynamics and, therefore, should be accounted 

for when evaluating impact of an intervention 

such as IRS. 

Generally, the study indicates a significant 

reduction in malaria cases associated with 

IRS intervention. Furthermore, it has been 

demonstrated that the delayed effects of 

climate conditions significantly influence 

malaria incidence during specific periods. 

Therefore, when evaluating the impact of 

interventions, it is crucial to thoroughly 

consider and account for the influence of 

lagged climate conditions. After accounting 

for lagged climate conditions, the study 

revealed a notable reduction in malaria 

incidence by 48% (CI: 46%-49%) associated 

with the implementation of Indoor Residue 

Spray (IRS) in the general population. 

However, when analyzing the data based on 

different age groups, the study found varying 

impacts. The under-5 age category exhibited 

a significant reduction in malaria cases (51%, 

CI: 49%-54%), whereas the over-5 category 

experienced a comparatively lower reduction 

(44%, CI: 47%-43%). The finding is 

important considering previous research that 

has highlighted the vulnerability of young 

children to severe malaria and the potential 

benefits of targeted interventions for this age 

group such as a study by Kazembe et al. 

(2015). The study by McLean et al. (2018) 

also reported differential impacts of 

community health worker (CHW) programs 

on malaria incidence among different 

population groups. 

The analysis also revealed a distinct 

counterfactual trend, demonstrating a higher 

incidence of malaria cases compared to what 

was observed and predicted by the model. 

The substantial reduction of 48% (CI: 46%-

49%) associated with the implementation of 

Indoor Residue Spray (IRS) supports the 

efficacy of this intervention strategy in 

combating malaria. 

In conclusion, the study highlights the 

significant impact of IRS intervention on 

reducing malaria incidence in Malawi. The 

inclusion of climate variables and accounting 

for lagged effects enhance the accuracy of the 

predictions and provide a comprehensive 

understanding of the intervention's effects. 
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The findings support the continued 

implementation and scale-up of IRS as a 

population-level intervention for malaria 

prevention and control, particularly in areas 

with high malaria burden. Furthermore, the 

differential impact observed among age 

groups emphasizes the importance of 

targeting interventions to specific 

populations, such as young children who are 

at higher risk of malaria. These findings 

contribute to the designing effective malaria 

control programs that consider both 

intervention strategies and environmental 

factors
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RCODE 

##LOADING REQUIRED PACKAGES IN R 

library(dyn) 

library(dlnm) 

library(splines) 

library(MASS) 

library(nlme) 

library(mgcv) 

library(tscount) 

library(car) 

## Transforming variables to zoo class 

RainFall<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Rain) 

Humidity<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Humidity) 

MinTemperature<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Min Tem`) 

MaxTemperature<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Max Tem`) 

MinTem<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Min Tem`) 

MaxTem<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Max Tem`) 

TotalMalariaCases<-Mangoch_Dataset_2015_2020_U_and_O5$MalariaTotal 

 

TotalMalariaU5<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$MalariaU5) 

TotalMalariaO5<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$MalariaO5) 

TotalPopulation<-Mangoch_Dataset_2015_2020_U_and_O5$Population 

Time <-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Time) 

Intervention <- zoo(Mangoch_Dataset_2015_2020_U_and_O5$Population) 



80 | P a g e  
 

 

##CHAPTER 2 

##FIGURE 2 

##SEASONAL PATTERN OF CLIMATE VARIABLES AND MALARIA  

##Malaria cases and rainfall seasonal pattern## 

seasonalAllCases<-plot(Time, TotalMalariaCases,main = " Malaria and Rainfall  Seasonal Trends", type = 

"l", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Malaria cases") 

par(new=TRUE) 

plot(Time,RainFall,type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "",col="blue") 

axis(side=4) 

legend(4, 550, legend=c("Malaria Cases", "Rainfall"),col=c("black", "blue"), lty=1:2, cex=0.8) 

##Malaria cases and humidity seasonal pattern## 

seasonalAllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Humidity  Seasonal Trends", type 

= "l", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Malaria Cases") 

par(new=TRUE) 

plot(Time,Humidity,type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "",col="blue") 

axis(side=4) 

legend(8, 85, legend=c("Malaria Cases", "Humidity"),col=c("black", "blue"), lty=1:2, cex=0.8) 

##Malaria cases and maximum temperature seasonal pattern## 

seasonalAllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Maximum Temperature  Seasonal 

Trends", type = "l", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = 

"Malaria Cases") 

par(new=TRUE) 

plot(Time,MaxTemperature,type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "",col="blue") 

axis(side=4) 
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legend(2, 37, legend=c("Malaria Cases", "Maximum Temperature"),col=c("black", "blue"), lty=1:2, 

cex=0.8) 

##Malaria cases and minimum temperature seasonal pattern## 

seasonalAllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Minimum Temperature  Seasonal 

Trends", type = "l", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = 

"Malaria Cases") 

par(new=TRUE) 

plot(Time,MinTemperature,type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "",col="blue") 

axis(side=4) 

legend(50, 25, legend=c("Malaria Cases", "Minimum temperature"),col=c("black", "blue"), lty=1:2, 

cex=0.8) 

##FIGURE 3 

## SCATTTER PLOTS OF CLIMATE VARIABLES AND MALARIA CASES## 

scatterRain<-plot(RainFall, TotalMalariaCases, main = "Malaria cases and rainfall",   xlab = "Rainfall", 

ylab = "Malaria cases", pch = 19, frame = FALSE) 

lines(lowess(RainFall, TotalMalariaCases)) 

scatterHum<-plot(Humidity, TotalMalariaCases, main = "Malaria cases and humidity",   xlab = 

"Humidity", ylab = "Malaria cases", pch = 19, frame = FALSE) 

lines(lowess(Humidity, TotalMalariaCases)) 

scatterMaxT<-plot(MaxTemperature, TotalMalariaCases, main = "Malaria cases and Maximum 

temperature",   xlab = "Maximum Temperature", ylab = "Malaria Cases", pch = 19, frame = FALSE) 

lines(lowess(MaxTemperature, TotalMalariaCases)) 

scatterMinT<-plot(MinTemperature, TotalMalariaCases, main = "Malaria cases and Minimum 

temparature",   xlab = "Minimum Temperature", ylab = "Malaria cases", pch = 19, frame = FALSE) 

lines(lowess(MinTemperature, TotalMalariaCases)) 
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##VARIABLE COLLINEARITY TEST## 

##TABLE 2 

##Pearson correlation table 

cor(Mangoch_Dataset_2015_2020_U_and_O5[, c("MalariaTotal","Rain","Humidity","Max Tem","Min 

Tem")]) 

##FIGURE 4 

## Generating VIF values for model with collinear climate variables 

modelAllModelVIF <- glm.nb(TotalMalariaCases ~  RainFall +  Humidity + MinTem + MaxTem + 

Intervention ,offset(log2(TotalPopulation)), data=Mangoch_Dataset_2015_2020_U_and_O5) 

vif_values<-vif(modelAllModelVIF) 

vif_values 

## Plotting VIF Bar Graph for with collinear climate variables 

barplot(vif_values,main="VIF Values", horiz=TRUE,col="steelblue") 

abline(v=5,lwd=3,lty=2) 

## Generating VIF values for model with collinear climate variables 

modelAllModelVIFReducedVIF <- glm.nb(TotalMalariaCases ~  RainFall + Humidity + MaxTem  + 

Intervention, offset(log2(TotalPopulation)), data=Mangoch_Dataset_2015_2020_U_and_O5) 

vif_valuesReduced<-vif(modelAllModelVIFReducedVIF) 

vif_valuesReduced 

## Plotting VIF Bar Graph for without collinear climate variables 

barplot(vif_valuesReduced,main="VIF Values", horiz=TRUE,col="steelblue") 

##TABLE 4 

##EXPONSURE LAG RESPONSE SPECIFICATION IN DLNM AND GENERATING BASIS 

VARIABLES# 

##Model Specification for rainfall 
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##Linear in exposure space and linear in lag space 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="lin"),arglag=list(fun="lin")) 

summary(basis.Rain) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) ,offset(log2(TotalPopulation)), 

data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Linear in exposure space and Polynomial in lag space 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="lin"),arglag=list(fun="poly",2)) 

summary(basis.Rain) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Polynomial in exposure space and Linear in lag space 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="poly",degree=3),arglag=list(fun="lin")) 

summary(basis.Rain) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Polynomial in exposure space and Polynomial lag space 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = 

list(fun="poly",degree=3),arglag=list(fun="poly",degree=2)) 

summary(basis.Rain) 
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modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Natural Cubic Splines function with knots in Quantiles in exposure soace and Linear in lag space 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",4),arglag=list(fun="lin")) 

summary(basis.Rain) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Natural Cubic Spline function in exposure space and Polynomial in lag space   

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2)) 

summary(basis.Rain) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

## Model specification for Humidity 

##Linear in exposure space and Linear in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="lin"),arglag=list(fun="lin")) 

summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 
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BIC(modelAllModel) 

##Linear in exposure space and Poly in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="lin"),arglag=list(fun="poly",2)) 

summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Poly in exposure space and Linear in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="poly",degree=3),arglag=list(fun="lin")) 

summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Poly in exposure space and Polynomial in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = 

list(fun="poly",degree=3),arglag=list(fun="poly",degree=2)) 

summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##NS in exposure space and Linear in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="lin")) 
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summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Natural Cubic Spline function in exposure space and Polynomial in lag space 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2)) 

summary(basis.Hum) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Model Specification for Maximum Temperature 

##Linear in exposure space and Linear lag space 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="lin"),arglag=list(fun="lin")) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Linear in exposure space and Poly in lag space 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="lin"),arglag=list(fun="poly",2)) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 
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modelAllModel 

BIC(modelAllModel) 

##Poly in exposure space and Linear in lag space 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="poly", 3),arglag=list(fun="lin")) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##Polynomial in exposure space and Polynomial in lag space 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = 

list(fun="poly",3),arglag=list(fun="poly",2)) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##NS in exposure space and Linear in lag space 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="lin")) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##NS in exposure space and Poly in lag space 
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basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",2)) 

summary(basis.MaxTem) 

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15) 

,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

BIC(modelAllModel) 

##FINAL MODEL WITH BASIS VARIABLES FOR CLIMATE VARIABLES 

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",2),arglag=list(fun="ns",2)) 

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2)) 

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",2)) 

modelAllModel <- glm.nb(TotalMalariaCases ~  basis.Rain  + basis.MaxTem + basis.Hum  + Intervention 

+ ns(Time, 15) ,offset(log2(TotalPopulation)),data=Mangoch_Dataset_2015_2020_U_and_O5) 

modelAllModel 

##NON LINEAR EFFECT PLOTING AND INTERPRETATION  

##FIGURE 5 

##Lagged effect of Rainfall 

predRain <- crosspred(basis.Rain, modelAllModel,coef=NULL, vcov=NULL, at=c(0:541.4),cen = 74.5) 

predRain 

plot(predRain, "overall",lwd=2,col = 4, xlab = "Rain", ylab = "RR", main = "Overall effect of rainfall") 

plot(predRain, ptype="slices", type = "p", pch = 19, cex = 1.5, var = 541,ci = "bars", ylab = "RR", main = 

"Lag-specific effect of amount of rainfall") 

plot(predRain, xlab = "Rainfall", theta = 240, phi = 40,ltheta = -185, zlab = "RR", main = "Effect of 

rainfall") 

plot(predRain, "contour", plot.title = title(xlab = "rainfall",ylab = "Lag", main = "Relative risk associated 

with rainfall"), key.title = title("RR")) 

##FIGURE 6 
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## Lagged effect of Humidity 

predHum <- crosspred(basis.Hum, modelAllModel,coef=NULL, vcov=NULL, at=c(40:84),cen = 65.2) 

predHum 

plot(predHum, "overall",lwd=2,col = 4, xlab = "Rain", ylab = "RR", main = "Overall effect of humidity") 

plot(predHum, ptype="slices", type = "p", pch = 19, cex = 1.5, var =84,ci = "bars", ylab = "RR", main = 

"Lag-specific effect of humidity") 

plot(predHum, xlab = "Humidity", theta = 240, phi = 40,ltheta = -185, zlab = "RR", main = "Effect of 

humidity") 

plot(predHum, "contour", plot.title = title(xlab = "Humidity",ylab = "Lag", main = "Relative risk 

associated with humidity"), key.title = title("RR")) 

##FIGURE 7 

## Lagged effect of Maximum temperature 

predMaxTem <- crosspred(basis.MaxTem, modelAllModel,coef=NULL, vcov=NULL, at=c(25:36),cen = 

30.99) 

predMaxTem 

plot(predMaxTem, "overall",lwd=2,col = 4, xlab = "Max temperature", ylab = "RR", main = "Overall 

effect maximum temperature") 

plot(predMaxTem, ptype="slices", type = "p", pch = 19, cex = 1.5, var = 36,ci = "bars", ylab = "RR", 

main = "Lag-specific effect maximum of temperature") 

plot(predMaxTem, xlab = "Maximum Temperature", theta = 240, phi = 40,ltheta = -185, zlab = "RR", 

main = "Effect of maximum temperature") 

plot(predMaxTem, "contour", plot.title = title(xlab = "Maximum temperature",ylab = "Lag", main = 

"Relative risk associated with maximum temperature"), key.title = title("RR")) 

##CHAPTER 3 

## Transforming variables to zoo class 

MalariaTotal1<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$MalariaTotal) 
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Rain1<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Rain) 

Humidity1<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Humidity) 

MinTemp1<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Min Tem`) 

MaxTemp1<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$`Max Tem`) 

MalariaU51<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$MalariaU5) 

MalariaO51<-zoo(Mangoch_Dataset_2015_2020_U_and_O5$MalariaO5) 

Time1 <-zoo(Mangoch_Dataset_2015_2020_U_and_O5$Time) 

## extracting other variables in the data set 

interventions <- interv_covariate(n = 72, tau = c(59), delta = c(1)) 

sinwave <- sin(2*pi/12*Mangoch_Dataset_2015_2020_U_and_O5$Time) 

cosinwave <- cos(2*pi/12*Mangoch_Dataset_2015_2020_U_and_O5$Time) 

PopAll<- Mangoch_Dataset_2015_2020_U_and_O5$Population 

PopU5<-Mangoch_Dataset_2015_2020_U_and_O5$U5Pop 

PopO5<-Mangoch_Dataset_2015_2020_U_and_O5$O5Pop 

##Table 5 and Figure 8 showing AIC , BIC and QIC for candidate models and residual plots 

## Model-0 with intercept only no regressors 

regressorsAll <- cbind() 

response<-window(TotalMalariaCases, start=5)##trancating first 4 months to be able to use 4 month 

delayed effects 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=NULL) 

summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 
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exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## Model-1 intercept and baseline  trend only 

regressorsAll <- cbind(Time1) 

regressors <- window(regressorsAll, start=5) 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 

summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 

exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## seasonal control and baseline trend 

regressorsAll <- cbind(sinwave, cosinwave, Time1) 

regressors <- window(regressorsAll, start=5)##trancating first 4 months to be able to use 4 month delayed 

effects 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 

 



92 | P a g e  
 

summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 

exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## Model seasonal control, baseline trend and intervention 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions) 

regressors <- window(regressorsAll, start=5) 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 

summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 

exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## Model seasonal control, baseline trend, intervention and non-lagged climate variables 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions,Rain1,Humidity1,MaxTemp1) 

regressors <- window(regressorsAll, start=5) 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 
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summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 

exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## Model with baseline, intervention, seasonal control and lagged climate variables 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2)) 

regressors <- window(regressorsAll, start=5) 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 

dynmodelAllAges0 

summary(dynmodelAllAges0) 

coefficients(dynmodelAllAges0) 

exp(coef(dynmodelAllAges0)) 

confint(dynmodelAllAges0) 

acf(residuals(dynmodelAllAges0)) 

## PREDICTING USING MODEL-5 WITH LAGGED CLIMATE VARIABLES 

## truncating variables to suit truncated anaylsis 

truncatedPop <- window(Mangoch_Dataset_2015_2020_U_and_O5$Population, start=5) 

truncatedU5Pop <- window(Mangoch_Dataset_2015_2020_U_and_O5$U5Pop, start=5) 

truncatedO5Pop <- window(Mangoch_Dataset_2015_2020_U_and_O5$O5Pop, start=5) 
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truncatedInterv <- window(Mangoch_Dataset_2015_2020_U_and_O5$IntervPeriod, start=5) 

truncatedtime <- window(Mangoch_Dataset_2015_2020_U_and_O5$Time, start=5) 

trResponseU5 <- window(Mangoch_Dataset_2015_2020_U_and_O5$MalariaU5, start=5) 

trResponseO5 <- window(Mangoch_Dataset_2015_2020_U_and_O5$MalariaO5, start=5) 

## predicted rate in all ages 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2)) 

regressors <- window(regressorsAll, start=5) 

response<-window(TotalMalariaCases, start=5) 

dynmodelAllAges0<-tsglm(response, 

                        model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                        xreg=regressors) 

##Table 6 Model coefficients for lagged climate variable model-5 

summary(dynmodelAllAges0) 

##UNDER ALL AGES ANALYSIS 

##Figure 9 Graphs showing predicted monthly incidence against counterfactual climate un 

adjusted for climate factors 

##Model predicted malaria cases in all ages 

predAllAges<-predict.glm(dynmodelAllAges0,type = "response") 

predAllAges 

##predicted rate 

predRateAllAges<-predAllAges/truncatedPop 

##Observation Rate 

ActualRateAllAges <- response/truncatedPop 

##Obtaining counter factual estimates from the model by removing intervention effect 
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predAllAgesCounter<-predAllAges/exp(-6.47e-01*truncatedInterv) ##-6.47e-01 is coefficient for 

intervention variable in the model 

predRateAllAgesCounter<-predAllAgesCounter/truncatedPop 

##plotting Predicted rate and counter factual 

seasonalAllCases<-plot(truncatedtime, response,main = "Actual and model predicted malaria cases", pch 

= 19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Number of 

Malaria Cases") 

lines(truncatedtime,predAllAgesCounter,lty="dashed", bty = "n", xlab = "", ylab = "",col="green") 

lines(truncatedtime,predAllAges,type = "l", bty = "n", xlab = "", ylab = "",col="blue") 

abline(v=59,col="Red") 

legend(3, 55000, legend=c("Predicted", "counter factual","IRS Start period"),col=c( 

"blue","green","Red"), lty=1:2, cex=0.8) 

##UNDER FIVE ANALYSIS 

## transforming population into log for an offset use 

logPopulation <- log(truncatedU5Pop) 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2)) 

regressors <- window(regressorsAll, start=5) 

dynmodelU5<-tsglm(trResponseU5, 

                  model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                  xreg=regressors)  

## predicted rate 

predUnder5<-predict.glm(dynmodelU5,type = "response") 

predRateUnder5<-predUnder5/truncatedU5Pop 

##Model residues 

##residuals.glm(dynmodelU5,type = "response") 
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##Observation Rate 

ActualRateUnder5 <- trResponseU5/truncatedU5Pop 

##Obtaining counter factual estimates from the model by removing intervention effect 

predUnder5Counter<-predUnder5/exp(-0.7230173*truncatedInterv) 

predRateUnder5Counter<-predUnder5Counter/truncatedU5Pop 

##plotting Predicted rate and counter factual 

seasonalAllCases<-plot(truncatedtime, trResponseU5,main = "Actual and model predicted malaria cases 

in Under 5", pch = 19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = 

"Number of Malaria Cases") 

lines(truncatedtime,predUnder5Counter,lty="dashed", bty = "n", xlab = "", ylab = "",col="green") 

lines(truncatedtime,predUnder5,type = "l", bty = "n", xlab = "", ylab = "",col="blue") 

abline(v=59,col="Red") 

legend(6, 27000,legend=c("Predicted", "counter factual","IRS Start period"),col=c( 

"blue","green","Red"), lty=1:2, cex=0.8) 

##OVER FIVE ANALYSIS 

## transforming population into log for an offset use 

logPopulation <- log(truncatedO5Pop) 

regressorsAll <- cbind(sinwave, cosinwave, Time1, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2)) 

regressors <- window(regressorsAll, start=5) 

dynmodelO5<-tsglm(trResponseO5, 

                  model = list(past_obs = c(1)), link = "log", distr = "nbinom", 

                  xreg=regressors)  

## predicted rate 

predOver5<-predict.glm(dynmodelO5,type = "response") 
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predRateOver5<-predOver5/truncatedO5Pop 

##Observation Rate 

ActualRateOver5 <- trResponseO5/truncatedO5Pop 

##Obtaining counter factual estimates from the model by removing intervention effect 

predOver5Counter<-predOver5/exp(-5.85e-01 *truncatedInterv) 

predRateOver5Counter<-predOver5Counter/truncatedO5Pop 

##plotting Predicted rate and counter factual 

seasonalAllCases<-plot(truncatedtime, trResponseO5,main = "Actual and model predicted malaria cases 

in Over 5", pch = 19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = 

"Number of Malaria Cases") 

lines(truncatedtime,predOver5Counter,lty="dashed", bty = "n", xlab = "", ylab = "",col="green") 

lines(truncatedtime,predOver5,type = "l", bty = "n", xlab = "", ylab = "",col="blue") 

abline(v=59,col="Red") 

legend(3, 29000, legend=c("Predicted rate", "counter factual","IRS Start 

period"),col=c("blue","green","Red"), lty=1:2, cex=0.8) 

 

 


