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ABSTRACT
The relationship between climate and malaria incidence is complex, with climate change
influencing the epidemiological patterns of malaria in different regions. Understanding the nature
of this relationship is essential for effective malaria programming, especially in the context of
changing climate conditions. Modeling the relationship between climate factors and malaria
incidence can help guide malaria control interventions based on current and projected climate data.
It also serves as a basis for establishing malaria early warning systems to aid resource planning.
This study aimed to investigate the relationship between climate factors, account for delayed
climate effects, and evaluate the impact of indoor residue spray (IRS) intervention on malaria
incidence. Monthly malaria incidence data were obtained from the national malaria control
program, while climate data were collected from the Department of Meteorological Services and
Climate Change in Mangochi district, Malawi. Two methods were employed: a distributed lag
non-linear model to examine the nature of the relationship between climate variables and malaria
incidence, and segmented regression to assess the impact of the IRS intervention while accounting
for lagged climate effects and seasonal trends. The results revealed an immediate peak in malaria
risk following extreme weather conditions, highlighting the importance of short-term effects of
climate. The risk of malaria immediately doubles with extreme rains and humidity compared to
average weather conditions. Notably, an immediate peak in malaria incidence was observed
following exposure to all climatic factors, and the effects continued to manifest for up to three
months (0-to-2-month lag). This suggests that previous climate conditions play a critical role in
predicting current and future malaria incidence. In conclusion, the findings highlight the
importance of short lags and the potential for immediate outbreaks following exposure to climatic
factors. Incorporating these findings into malaria programming and control efforts can enhance the
effectiveness of interventions and contribute to the development of proactive strategies to reduce

the burden of malaria in the context of a changing climate.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

This chapter provides a concise overview of the malaria burden in Malawi, including an
examination of the historical trend. It also summarizes the national strategic plan and highlights
the key interventions implemented to mitigate malaria incidence in the country. The chapter delves
into a comprehensive explanation of the malaria transmission mechanism and explores the role of
climate in shaping the dynamics of malaria transmission. Lastly, it articulates the problem
statement, outlines the research objectives, and underscores the significance of this study in the
context of malaria control efforts.

1.2.  Background

In Malawi, malaria is endemic and all population is at risk and therefore affects large number of
people. It continues to be a major public health problem, accounting for 20% of all outpatient visits
in all age groups (HMIS, 2020). Malawi accounts for 2% of malaria cases worldwide and is among
the top 15 countries with a high malaria burden (Chilanga, Delphine, Heather, & Claudia, 2020).
In 2020 alone the country registered 6.9 million cases both confirmed and presumed (99.6% and
0.3% respectively) reported from health facilities and community case management program.
Malawi has seen no major changes in malaria trend between 2014 and 2020 from 397 per 1000
population in 2014 to 385 per 1000 population in 2020.

Malaria burden is high among under-5 populations who are prone to severe malaria infection
because they lack acquired immunity (Malawi Government, 2017). According to malaria indicator
survey 2017, prevalence of malaria among under-5 populations has slightly declined from 33% in
2014 to 27% in 2017, the last malaria indicator survey was conducted in 2017. Vulnerable
populations to malaria also include pregnant women and those living in areas that are prone to

natural disasters, including floods and earth tremors. Populations living in hard-to-reach areas -



defined as more than 5km from the nearest health facility or limited to health services by

geographical barriers - are also vulnerable (Malawi Government, 2017).

Malaria continues to be public health burden and has caused 15% of all deaths in public health
facilities in the year 2020 (HMIS, 2020). According to health management information system
(HMIS), malaria mortality rate has declined from 28 per 100,000 populations in 2014 to 13 per
100,000 populations in 2020.

Transmission is perennial in most areas and peaks after the start of the rainy season which begins
in November/December, lasting through March/April. Malaria transmission intensity and risk of
infection varies across the country and is highest in areas with high temperatures, rainfall and
humidity, particularly along the low-lying lakeshore and Shire river valley areas and is lower,

along the highland areas (Government of Malawi, 2020).

The Ministry of Health in Malawi, through national malaria control programme, aims at
eliminating malaria by 2030. The overall goal of malaria strategic plan 2017 — 2022 was to reduce
malaria incidence from 386 per 1000 population in 2015 to 193 per 1000 population by 2022 and
malaria deaths by at least 50% of 2015 levels by 2022, (Government of Malawi, 2020). Key
interventions include: Indoor Residual Spraying (IRS), Long Lasting Insecticide Treated Nets
mass distribution campaign and malaria vaccination targeting specific population periodically.
Other interventions implemented routinely are net distribution targeting pregnant women and
newborn babies and intermittent prevention and treatment in pregnancy (IPTp) administration to
pregnant women. Home remedies to control malaria are also widely practiced at individual level
such as use of mosquito repellants and small-scale indoor residue spray (IRS). Lumefantrine-
Artemether (LA) is the first-line treatment for uncomplicated malaria while Artesunate-
Amodiaquine (ASAQ) as the second-line treatment for uncomplicated malaria (Government of
Malawi, 2020).

1.3. Malaria Transmission Mechanism and Climate

Malaria burden is a result of interaction among three determinants namely host (age, sex and
immunity), environment (climate and altitude) and parasite/agent (antigenicity, strain, resistance
and behaviour) (Government of Malawi, 2020). The host component is shaped by several factors

including genetic and acquired immunity, behavior, demographics, culture, socioeconomic



characteristics, and politics (Marcia & Castro, 2017). In highly malaria endemic areas like Malawi,
children are mostly non-immune compared to adults which influence transmission intensity of
malaria in children (Kazembe, Kleinschmidt, Holtz, & Sharp, 2006). The environmental
component depends both on the natural environment—temperature, humidity, rainfall, soil quality,
elevation/slope, land cover, hydrography, presence of natural enemies of mosquitoes and larvae,
and natural disasters— and the human-made environment—Iland use, land change, deforestation,
housing type, infrastructure (water, sanitation, and waste collection), urbanization, development
projects (e.g., roads, railways, dams, irrigation, mining, resettlement projects, and oil pipelines),
and disasters facilitated by human-made changes. The vector is shaped by the type of Anopheles
species and associated feeding, resting, biting, and breeding behavior, flight range, vectorial
capacity, mortality and reproduction rate, mosquito resistance to insecticides, and larval resistance
to larvicides (Marcia & Castro, 2017).

Malaria is a parasitic disease caused by Plasmodium species (spp.), unicellular protozoan
organisms in the phylum of Apicomplexa (Xin, Cui, & Deirdre, 2020). The species that infect
humans include Plasmodium falciparum, P. vivax, P. malariae, P. knowlesi, and P. ovale, with P.
ovale recently recognized as two subspecies called Plasmodium ovale curtisi (classic type) and
Plasmodium ovale wallikeri (Sutherland, 2010). Whereas, P. vivax is the most widespread species,

P. falciparum is the deadliest to humans.

It is often referred to as a climate-dependent disease, which is primarily because certain climatic
conditions are needed for the complete maturation of sporozoites in mosquitoes (Varvara, Natalia,
Mikhail, & Mikhail, 2019). Varvara et al (2019) reported that Plasmodium vivax requires lower
temperatures for its development in the vector than other human malaria species. Climate
conditions affects the bionomics of Anopheles mosquitoes, such as the speed of development of
the aquatic stages (which depends on the temperature of the place of breeding), the speed of blood

digestion (which depends on the temperature of the resting place), and their survival in general.

Climatic changes in the past have greatly affected the distribution of malaria and likely modified
malaria geography (Phillippe & Myriam, 1995). Phillippe et al (1995) highlighted that making
predictions regarding the geographical extent and intensity of malaria is difficult and the
relationship between malaria and climate is complex. According to Phillippe et al (1995),

temperature affects the survival of the parasite only during its life-cycle in the Anopheles vector



and modifies the vectorial capacity of the Anopheles. Optimal values of temperature, ranging
between 22 and 300C, lengthen the life-span of the mosquitos and increase the frequency of blood
meals taken by the females, to up to one meal every 48 hours. Higher temperatures also shorten
the aquatic life cycle of the mosquitos from 20 to 7 days and reduce the time between emergence

and oviposition, as well as the time between successive ovipositions.

Phillippe et al (1995) also indicated that rainfall generally means new opportunistic breeding
places. Nonetheless, rainfall can also destroy existing breeding places; heavy rains can change
breeding pools into streams, impede the development of mosquito eggs or larvae, or simply flush
the eggs or larvae out of the pools. Conversely, exceptional drought conditions can turn streams
into pools. The appearance of such opportunistic mosquito breeding sites sometimes precedes
epidemics. The interaction between rainfall, evaporation, runoff, and temperature modulates the
ambient-air humidity, which in turn affects the survival and activity of Anopheles mosquitos. To
survive, they need at least 50% or 60% relative humidity. Higher levels lengthen the life-span of

the mosquitos and enable them to infect more people.

Although Phillippe et al (1995) described a range of favorable conditions, the actual relation is
not the same due to mediating/moderating factors, as such the relation of climate and malaria may
vary from place to place (Phillippe & Myriam, 1995). As also observed by Chuang et al (2017),
different administrative regions with varying vulnerability to climate show varying effects
prompting the need to localize investigation to specific places with varying climate vulnerability
(Chuang & Ting, 2017). Lisbeth et al (2017), in a study conducted in Guna Yala also called for
further studies about weather impacts on malaria vector ecology, as well as the association of
malaria vectors while paying attention to different socio-economic conditions such as poverty and
cultural differences (Lisbeth, Jose, Chystrie, & Milagros, 2017).

Malawi’s climate is subtropical with the three distinct seasons: rainy season extending from
November to April, and the dry season from May to mid-August with temperatures at night
reaching as low as 10-140 C and the hot season from between mid-August and November (The
INFORM Project, 2014). Generally, the highlands are cooler and wetter while the low-lying

regions are hotter and more humid.



1.4.  Problem Statement

Malaria is indirectly associated with natural risk factors such as rainfall pattern, temperature and
humidity which influence spread and transmission of malaria parasite (Ayansina, Isioma,
Consolato, & Oluwatoyin, 2020). High rainfall increases mosquito breeding sites and therefore
increasing transmission of malaria parasites among individuals. In the same way other risk factors;
temperature and humidity also affect malaria transmission by regulating the rate of development
of the mosquito larvae which influences mosquito survival rates (Gunda, Chimbar, Shamu,
Sartorius, & Mukaratin, 2017). The link between climate variability and vector-borne diseases has
also been established in a study by Gunda et al (2017) investigating association between malaria
incidence and climate variables in rural Gwanda in Zimbabwe. Climate variability has the potential
to either work for or against efforts to control the disease. (Gunda, Chimbar, Shamu, Sartorius, &
Mukaratin, 2017).

An understanding of how malaria incidences vary as a result of climate variability (present and
recent past) is important for planning for future malaria control programmes (Gunda, Chimbar,
Shamu, Sartorius, & Mukaratin, 2017). It allows for the identification of the most suitable timing
for implementing malaria interventions, considering the impact of past climate conditions. This
understanding can serve as a guiding tool for program implementers, enabling them to incorporate
past climate experiences into their decision-making process and enhance the effectiveness of
malaria control initiatives. Also, exploring the connection between malaria incidence and lagged
climatic conditions has the potential to contribute significantly to the development of malaria early

warning systems.

Investigating the impact of past climate experiences on malaria transmission is also crucial for
understanding local epidemiological shifts, some of which can be attributed to climate change.
Future climate projections indicate a general warming trend, particularly in southern Malawi and
over the lake (Vincent & Katharine, 2020). However, different climate models simulate diverse
patterns of rainfall, leading to varying predictions. By 2030, the anticipated changes in annual
mean rainfall range from a modest -8% decrease to a +20% increase. These changes become more
pronounced by the 2070s, with projected ranges of -17% decrease to +27% increase. Conversely,

there is a strong consensus among climate models regarding rising temperatures in Malawi.



Projections indicate a temperature increase of 0.5 to 1.5°C by the 2040s and a more substantial
warming of 4 to 4.3°C by the year 2090 (Vincent & Katharine, 2020).

The changing climatic conditions highlight the importance of considering the complex interactions
between climate factors and malaria transmission dynamics. Understanding the local climate
patterns and their potential impact on malaria is also crucial for developing effective strategies to
mitigate the disease and adapt to future climate challenges.

In addition to the aforementioned points, it is worth emphasizing that the statistical methods
commonly employed in previous studies often assume a linear relationship between climate
variables and malaria incidence. However, it has been reported in numerous studies that non-linear
relationships exist in this context. Therefore, this study addressed this limitation by applying

methods which captures non-linear relationship more accurately.

Furthermore, this research incorporated methods to model the delayed effects of climate on malaria
transmission. Understanding the time lag between climate factors and their impact on malaria
incidence is essential to comprehensively assess the relationship between the two variables. By
applying appropriate methodologies to account for delayed climate effects, the study provides a
more comprehensive and accurate analysis of the influence of climate on malaria transmission in

Mangochi district.

Lastly, the study assessed the impact of indoor residue spray (IRS) intervention while accounting
for the lagged and non-linear effects of climate in Mangochi, Malawi. Mangochi district is one of
the areas burdened by high malaria cases, as highlighted in the Malawi Malaria Strategic Plan
2017-2022. Therefore, it serves as an ideal location to examine the interrelationship between

climate change and malaria.
1.5. Research Objectives

The primary objective of this study was to model the impact of IRS malaria intervention while

accounting for lagged and non-linear effects of climate in Mangochi, Malawi.

1.5.1. Specific Objectives
15.1.1. To model lagged and nonlinear effects of climate factors on malaria

in Mangochi, Malawi.



1.5.1.2. To evaluate impact of indoor residue spray (IRS) malaria

intervention while accounting for lagged effects of climate factors in Mangochi, Malawi.
1.6.  Significance of the study

According to the Malawi Malaria Strategic Plan 2017-2022, the country aims to significantly
reduce malaria incidence and deaths. The goal is to reduce malaria incidence by 50% from a
baseline of 386 cases per 1000 population in 2016 to 193 cases per 1000 population, and reduce
malaria deaths by 50% from 23 deaths per 100,000 population to 12 deaths per 100,000 population
by 2022. To achieve this, Malawi aims to have at least 90% of the population utilizing one or more
malaria preventative interventions. The national malaria control program will prioritize the
implementation of quality indoor residual spraying (IRS) in selected epidemiological areas, guided
by international/WHO standards and local climate trends. The success of IRS depends on the
proper timing of implementation, aligned with peak malaria periods. This study will help forecast
malaria peak periods based on past climate experiences, providing guidance for selecting the

optimal implementation period for IRS to maximize its impact in reducing malaria transmission

The study is also justified by the need to develop action plans for malaria epidemic prevention and
response in Malawi, particularly considering the increasing malaria incidence due to climate
change (Government of Malawi, 2020). A malaria early warning system (MEWS) is seen as a
promising tool to reduce the burden of malaria by accounting for the complex malaria-climate
dynamics (Yoonhee et al., 2019). This study aims to contribute to the field by modeling the lagged
effects of climate on malaria, which can be used to forecast future malaria epidemics based on past
climate experiences. Enhancing the MEWS by incorporating climate-related epidemics is crucial

for preventing malaria-related deaths during epidemics

This study aligns with Sustainable Development Goal (SDG) number 3, which aims to achieve
good health and well-being for all. Target 3.B under this goal specifically focuses on improving
early warning systems for global health risks. By developing an improved early warning system
for malaria epidemics in Malawi, based on past climate experiences, this study contributes to the
achievement of SDG 3.0. The enhanced early warning system will support the program's response
to future malaria epidemics by utilizing climate data, ultimately helping to prevent avoidable

deaths during disease outbreaks.



1.7.  Organization of Thesis

The study is structured in a systematic manner to address the research objectives. Chapter 1 serves
as an introduction, providing an overview of the study objectives. The subsequent chapters, namely
Chapter 2 and Chapter 3, focus on specific aspects/objectives of the investigation. Each chapter
includes a literature review, theoretical framework, materials and methods, results and discussion,
and a conclusion specific to each objective. Theoretical framework outlined in chapter 2 also

applies to chapter 3.

In Chapter 2, the primary focus is to model the lagged and nonlinear effects of climate factors on
malaria in Mangochi, Malawi. This chapter delves into the intricate relationship between climate
variables and malaria transmission dynamics, considering both the time delay and non-linear
associations. By incorporating these factors into the modeling process, a more comprehensive

understanding of the influence of climate on malaria incidence is achieved.

Chapter 3 takes the analysis further by incorporating lagged climate conditions when evaluating
the impact of interventions on malaria incidence. By accounting for the time lag between climate
factors and their effect on malaria transmission, this chapter provides a more accurate assessment
of the benefits derived from interventions. The inclusion of lagged climate effects in the evaluation
process enhances our understanding of the true impact of interventions and their effectiveness in

reducing malaria cases in the specific context of Mangochi, Malawi.

Finally, Chapter 4 serves as the concluding chapter, providing an overall summary and conclusion
that encompasses all the objectives examined throughout the thesis. This chapter synthesizes the
findings from the preceding chapters, highlighting the key insights gained from the investigation

and their implications for malaria control strategies.



CHAPTER 2

MODELLING LAGGED AND NONLINEAR EFFECTS OF CLIMATE FACTORS ON
MALARIA IN MANGOCHI, MALAWI

2.1.  Introduction

There is well documented evidence that malaria is influenced by climate factors which impact on
vector dynamics hence influencing spread and transmission of malaria parasite among individuals
(Lisbeth, Jose, Chystrie, & Milagros, 2017). In Malawi, malaria transmission is highest during
rainy season (November to April) when there is also an increase in malaria vector breeding sites
(Government of Malawi, 2020). Low lying areas have hot temperatures which is more favorable
for mosquito breeding hence transmission is also highest in these areas. However due to climate
change there is an observation that even highlands are experiencing rise of malaria cases attributed
to increasing temperatures in highland areas that also favors malaria vector breeding.

Phillippe et al (1995) indicated that potential transmission of malaria is controlled by climatic
factors such as temperature, humidity, and rainfall, which regulate the biology of development of
both mosquito and parasite (Phillippe & Myriam, 1995). Ogden et al (2017) also emphasized the
global concern of impacts of climate change on the ‘big two diseases’: malaria and dengue, which
have now perhaps become the ‘big five’ of malaria, dengue, yellow fever, chikungunya and Zika
(Ogden, 2017). According to the paper, the big five diseases are intrinsically sensitive to weather
and climate (Ogden, 2017).

Many studies have established presence of non-linear relationship between climate variables and
malaria risk in other countries (Gunda, Chimbar, Shamu, Sartorius, & Mukaratin, 2017). Gunda
et al (2017) identified that administrative regions with varying vulnerability to climate show
varying effects prompting the need to localize investigation of specific places with varying climate
vulnerability. Lisbeth et al (2017) called for further studies about weather impacts on malaria
vector ecology, as well as the association of malaria vectors with Gunas paying attention to their

socio-economic conditions of poverty and cultural differences as an ethnic minority (Lisbeth, Jose,



Chystrie, & Milagros, 2017). The primary focus in this chapter is to model the lagged and nonlinear

effects of climate factors on malaria in Mangochi, Malawi.

2.2.  Literature review

Malaria, according to the World Health Organization, is one of the most serious and complex
health problems facing humanity in the 20th century. In the past, climatic changes have greatly
affected its geography (Phillippe & Myriam, 1995). Its seriousness and complexity are therefore
likely to be compounded by an anthropogenic greenhouse effect. Phillippe et al (1995) indicated
that the intensity and the extent of malaria potential transmission significantly change under the
climate change scenarios generated by five atmospheric general circulation models. All five
simulations revealed an increase in seasonal malaria at the expense of perennial malaria which is
cause for great concern. Indeed, seasonal malaria is most likely to lead to epidemics among
unprepared or nonimmune populations. Moreover, climate change may trigger massive migrations
of environmental refugees. Such population movements would likely put national and international
health infrastructures under severe stress. Today, malaria is a developing country issue but could
spread to higher latitudes. The results obtained with Malaria Potential Occurrence Zone (MOZ)
model suggest that malaria could become a public health problem for developed countries within

decades.

There has been much debate as to whether or not climate change will have, or has had, any
significant effect on risk from vector-borne diseases (Ogden, 2017). The debate on the former has
focused on the degree to which occurrence and levels of risk of vector-borne diseases are
determined by climate-dependent or independent factors, while the debate on the latter has focused
on whether changes in disease incidence are due to climate at all, and/or are attributable to recent
climate change. Ogden et al (2017) reviewed possible effects of climate change on vector-borne
diseases, methods used to predict these effects and the evidence to date of changes in vector-borne
disease risks that can be attributed to recent climate change. The findings are that predictions have
both over- and underestimated the effects of climate change. Mostly under-estimations of effects
are due to a focus only on direct effects of climate on disease ecology while more distal effects on
society’s capacity to control and prevent vector-borne disease are ignored. It also established

increasing evidence for possible impacts of recent climate change on some vector-borne diseases
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but for the most part, observed data series are too short (or non-existent), and impacts of climate-

independent factors too great, to confidently attribute changing risk to climate change.

Risk assessment regarding the distribution of malaria vectors and environmental variables
underpinning their distribution under changing climates is crucial towards malaria control and
eradication (Godwin, Kayode, & Olakunle, 2019). Godwin et al (2019) estimated the potential
future distribution of major transmitters of malaria in Nigeria—Anopheles gambiae sensu lato and
its siblings: Anopheles gambie sensu stricto, and Anopheles arabiensis under low and high
emissions scenarios. The study established higher magnitude of change in species prevalence
predicted for the later part of the 21st century under high emission scenario, driven mainly by
increasing and fluctuating temperature, alongside longer seasonal tropical rainfall accompanied by
drier phases and inherent influence of rapid land use change, may lead to more significant increase
in malaria burden when compared with other periods and scenarios during the century; especially

in Humid forest, Derived savanna, Sahel and Sudan savannas.

Cyril et al (2018) also indicated that climate change is one of the greatest threats to human health
in the 21st century (Cyril, Marie, & Annie, 2018). This is because it directly impacts on health
through climatic extremes, air quality, sea-level rise, and multifaceted influences on food
production systems and water resources. It also affects infectious diseases, which have played a
significant role in human history, impacting the rise and fall of civilizations and facilitating the
conquest of new territories. The paper by Cyril et al (2018) highlighted significant regional
changes in vector and pathogen distribution reported in temperate, peri-Arctic, Arctic, and tropical
highland regions during recent decades, changes that have been anticipated by scientists
worldwide. The review established that further future changes are likely if we fail to mitigate and
adapt to climate change. Many key factors affect the spread and severity of human diseases,
including mobility of people, animals, and goods; control measures in place; availability of
effective drugs; quality of public health services; human behavior; and political stability and
conflicts. With drug and insecticide resistance on the rise, significant funding and research efforts
must be maintained to continue the battle against existing and emerging diseases, particularly those

that are vector borne

Life cycles of malaria mosquitoes and parasites are strongly affected by climate factors such as

temperature and precipitation (Jung Eun Kim, 2018). The paper by Jung et al (2018) indicates that
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optimal temperature for malaria transmission is around 25°C, which suggests that malaria
transmission may occur predominantly between summer and early fall in Korea (Jung Eun Kim,
2018). In areas where climate has been gradually shifting may increase the risk of massive malaria
outbreaks. Jung et al (2018) further emphasized the importance of investigating potential effect of

climate change on P. vivax malaria transmission through a modeling study.

Rainfall and temperature are considered the main weather factors that highly determine malaria
epidemics (Yoonhee, Ratnam, Takeshi, Yushi, & Swadhin, 2019). Yoonhee et al (2019) noted that
high rainfall increases the number of breeding sites for mosquitoes and leads to increases in malaria
transmission. He also acknowledged that some studies, however, have reported that intense rainfall
could flush early-stage larvae and shrink mosquito populations in the short term. The study further
reported that high temperatures increase the chance of transmission by shortening the duration of
parasite growth in mosquitoes. Temperature changes also influence the development,
reproduction, survival, and biting rate of mosquitoes (Yoonhee, Ratnam, Takeshi, Yushi, &
Swadhin, 2019).

Soma et al (2019) reported major reasons for the persistence of malaria is the extensive geographic
and climatic diversity of the country, which supports ideal ecological conditions for sustaining the
parasites and their vectors (Soma, Vinay, Poonam, & Ramesh, 2019). The major climatic
determinants of malaria are temperature, rainfall and humidity. The paper further noted that impact
of climate change is not uniform around the globe: Some places may become warmer and drier,
while others warmer and wetter. Hence, the threat of climate change is expected to have a profound
effect on the mosquito’s longevity, development of malaria parasites in the vectors, and
consequently opening the windows of malaria transmission particularly in areas which are free due
to temperature constrains. In other words, global climate change is likely to alter the spatial and
temporal distribution of malaria. It further states that climate change will increase the opportunities
for malaria transmission in traditionally non-malarious areas, and make it difficult to control in
traditionally malarious areas due to an alteration in their growth cycle and transmission seasons.
The study reported that although future repercussions of climate change on malaria transmission

at the global level have already been explored; however, such evidences are limited in other areas.

A paper by Ayansina et al (2020) also mentioned the role of climatic variability and seasonality as

significant in the spatiotemporal distribution of diseases (Ayansina, Isioma, Consolato, &
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Oluwatoyin, 2020). The paper showed that the occurrence and spatial distribution of malaria are
sensitive to the seasonality of climatic factors in most African countries, and other parts of the
world with significant perinatal morbidity and mortality. This is because disease vectors also
depend on suitable habitats to breed, which in turn depends heavily on climatic conditions and for
understanding the nature of some illness. The malaria and meningitis (MM) transmission is highly
seasonal due to climatic conditions; these occurrences are much more frequent in recent times due
to climate change. The paper further states that climate and health are indistinctly interconnected,
and this is the same for infectious diseases. Climate change is likely to increase malaria and
meningitis incidence as the future environment might become more suitable for malaria
transmission in many tropical highlands. It also reported a corresponding 0.90% increase in the
number of malaria cases to each 1 °C temperature increase. Hertig et al (2019) also found that the
occurrence of vector competent Anopheles species and favorable climatic conditions
autochthonous malaria cases may re-emerge in countries where malaria was previously eradicated
(Hertig, 2019).

Although malaria is one of the greatest historical killers of mankind, its range is limited by climate
to the warmer regions of the globe (Steffen & Abba, 2018). The paper by Steffen et al (2018)
further mentioned that anthropogenic global warming (and climate change more broadly) now
threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium
malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles,
while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local
hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus
been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria
transmission dynamics, but have reached somewhat disparate conclusions as to optimum
temperatures for transmission, and the possible effect of increasing temperatures upon (potential)
malaria distribution, with some projecting a large increase in the area at risk for malaria, but others
predicting primarily a shift in the disease’s geographic range. The paper also indicated that both
global and local environmental changes drove the initial emergence of P. falciparum as a major
human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep

history through the present.
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Florence et al (2019) also highlighted that climate variables that directly influence vector-borne
diseases’ ecosystems are mainly temperature and rainfall (Florence & John, 2019). This is not only
because the vectors bionomics are strongly dependent upon these variables, but also because most
of the elements of the systems are impacted, such as the host behavior and development and the
pathogen amplification. The paper also established that impact of the climate change on the
transmission patterns of these diseases is not easily understood, since many confounding factors
are acting together. Consequently, knowledge of these impacts is often based on hypothesis
derived from mathematical models. Nevertheless, some direct evidences can be found for several
vector-borne diseases. Evidences of the impact of climate change are available for malaria,
arbovirus diseases such as dengue, and many other parasitic and viral diseases such as Rift Valley
Fever, Japanese encephalitis, human African trypanosomiasis and leishmaniasis. The effect of
temperature and rainfall change as well as extreme events, were found to be the main cause for
outbreaks and are alarming the global community. Among the main driving factors, climate
strongly influences the geographical distribution of insect vectors, which is rapidly changing due
to climate change. Further, in both models and direct evidences, climate change is seen to be
affecting vector-borne diseases more strikingly in fringe of different climatic areas often in the
border of transmission zones, which were once free of these diseases with human populations less
immune and more receptive. The impact of climate change is also more devastating because of the
unpreparedness of Public Health systems to provide adequate response to the events, even when
climatic warning is available. Although evidences are strong at the regional and local levels, the
studies on impact of climate change on vector-borne diseases and health are producing

contradictory results at the global level.

Yen et al (2020) explained that changes in the Earth’s climate and weather continue to impact the
planet’s ecosystems, including the interface of infectious disease agents with their hosts and
vectors (Yeh, Fair, Smith, & Torres, 2020). Environmental disasters, natural and human-made
activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently,
changes in habitat, displaced populations, and environmental stresses that affect the survival of
species are amplified over time. The recurrence and spread of vector-borne (e.g., mosquito, tick,
aphid) human, animal, and plant pathogens to new geographic locations are also influenced by
climate change. The distribution and range of humans, agricultural animals and plants, wildlife

and native plants, as well as vectors, parasites, and microbes that cause neglected diseases of the
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tropics as well as other global regions are also impacted. In addition, genomic sequencing can now
be applied to detect signatures of infectious pathogens as they move into new regions. Molecular
detection assays complement metagenomic sequencing to help us understand the microbial
community found within the microbiomes of hosts and vectors, and help us uncover mechanistic
relationships between climate variability and pathogen transmission. The understanding of, and
responses to, such complex dynamics and their impacts can be enhanced through effective, multi-
sectoral One Health engagement coupled with applications of both traditional and novel
technologies. Concerted efforts are needed to further harness and leverage technology that can

identify and track these impacts of climate changes in order to mitigate and adapt to their effects.

In a study conducted by Lisbeth et al (2017) showed that EL Nifio Southern Oscillation (ENSO),
rainfall and Normalized Difference Vegetation Index (NDVI) were associated with the number of
malaria cases in Guna Yala (Lisbeth, Jose, Chystrie, & Milagros, 2017). The study established
high vulnerability of Guna populations to malaria and also that malaria infection is sensitive to
climate change. They further called for further studies about weather impacts on malaria vector
ecology, as well as the association of malaria vectors with Gunas paying attention to their socio-

economic conditions of poverty and cultural differences as an ethnic minority.

Chuang et al (2017) in Swaziland investigated effects of climate to malaria in four administrative
regions Lubombo, Hhohho, Manzini and Shiselweni (Chuang & Ting, 2017). This study indicated
that climate conditions were more important in the Hhohho and Lubombo administrative regions,
implying that residents in these areas are at higher risk of infection when temperatures and
precipitation are suitable for malaria transmission. This clearly shows that places with different
vulnerability to climate respond differently hence the need to localize and investigate area specific

estimates of climate factors.

Non-linear relationship between climate factors and malaria incidence has been found in some
studies. In Zimbabwe, Gunda et al (2017) investigated Malaria incidence trends and their
association with climatic variables in rural Gwanda (Gunda, Chimbar, Shamu, Sartorius, &
Mukaratin, 2017). The results showed significant association between malaria incidence and the
climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only

precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly
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associated with incidence at specific lag periods. DLNM results suggest a key risk period in current

month, based on key climatic conditions in the 1-4-month period prior.

In a paper conducted in republic of Korea, Jae et al (2012) suggested that malaria transmission in
temperate areas is highly dependent on climate factors (Jae, Hae, & Young, 2012). In addition,
lagged estimates of the effect of rainfall on malaria are consistent with the time necessary for

mosquito development and P. vivax incubation.

Yoonhee et al (2019) proposed methods for malaria forecasting based on different modeling
approaches such as statistical modeling (e.g., generalized linear model (GLM) and autoregressive
integrated moving average (ARIMA) time series model), mathematical modeling (e.g.,
susceptible-exposed-infected-recovered (SEIR) model), and machine learning methods (e.g.,
neural network) (Yoonhee, Ratnam, Takeshi, Yushi, & Swadhin, 2019). However, the study
acknowledged that no one method has been a gold standard because each method has different
modeling assumptions and the optimal choice of the method depends upon the characteristics of a
study population. Yoonhee et al (2019) applied a flexible statistical modeling approach, a GLM
with a distributed lag nonlinear structure, to understand the complexity of nonlinear and delayed
malaria-weather associations and develop a weather-based malaria prediction model accordingly.
In this chapter, GLM with a distributed lag nonlinear structure is applied to model the nature of

relationship between climate variables and malaria incidence in Mangochi, Malawi.

2.3.  Conceptual framework

2.3.1. Generalized Linear Model

Malaria has been modeled using various statistical methods in the literature and significant malaria
predictors (particularly climatic factors) have been identified in a variety of settings
(Mukhopadhyay, Tiwari, Shetty, Gogtay, & Thatte, 2019). The statistical methods include linear
regression and generalized linear regression with trend, seasonal parameters and weather
covariates. The conditional distribution of malaria counts given the past, is assumed to follow a
distribution from the exponential family (usually taken to be a Poisson/negative binomial
distribution). Due to the presence of high dispersion in the data, a negative binomial distribution

gives a better fit. This section reviews generalized linear modeling for time series data.
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Generalized linear models (GLM) extend the concept of the well understood linear regression
model. The linear model assumes that the conditional expectation of Y (the dependent or response
variable) is equal to a linear combination XTB which could also be written as Y=XTB+e.
Unfortunately, the restriction to linearity cannot take into account a variety of practical situations.
For example, a continuous distribution of the error term implies that the response Y must have a
continuous distribution as well. Hence, the linear regression model may fail when dealing with

binary Y or with counts data.

GLM methodology is a specific class of nonlinear models for a general approach to nonlinear
regression which assumes that the distribution of Y is a member of the exponential family. The
exponential family covers a large number of distributions for example discrete distributions as the
Bernoulli, binomial and Poisson which can handle binary and count data or continuous

distributions as the normal, Gamma or Inverse Gaussian distribution.

A distribution is a member of the exponential family if its probability mass function (if Y discrete)

or its density function (if Y continuous) has the following form.

y0 — b(6)

W) + C(y, (D)

f(v.6,0) = EXP<

Equation 1

The functions a(*), b(*) and c(*) varies for different Y distributions and the parameter of interest is
0, which is also called the canonical parameter (McCullagh and Nelder,1989). The additional

parameter @, is only relevant for some of the distributions, and is considered as nuisance parameter.
2.3.2. Structure of GLM
A generalized linear model (or GLM) consists of three components:

A random component, specifying the conditional distribution of the response variable, Yi

(for the ith of n independently sampled observations), given the values of the explanatory

y6-b(6)
a(9)

variables in the model f(y,6,0) = exp( )+ c(y,®), where @ is a dispersion

parameter and functions b(), a() and c() are known.
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A linear predictor, that is a linear function of regressors n; = a + B;X;;+B, X, + Br Xk
which may include quantitative explanatory variables, transformations of quantitative

explanatory variables, polynomial regressors, dummy regressors, interactions, and so on.

Link Function, the link function which links the response variable, u; = E(Y1), to the linear

predictor: g(ui) = n; = a + B;Xj;+B,Xj; + BrXix
2.3.3. GLM for Time Series

The ideas from generalized linear models are used in modeling time series data which is extended
to handle time series where the data are dependent and the covariates are time dependent. Partial
likelihood function transports main inferential features appropriate for independent data to time
series which is not necessarily stationary. An essential component of partial likelihood is that it
allows for temporal or sequential conditional inference with respect to a filtration generated by all
that is known to the observer at the time of observation (Benjamin & Konstantinos, 2002). This
enables very flexible conditional inference that can easily accommodate autoregressive

components, functions of past covariates, and all sorts of interactions among covariates.
2.3.4. Parameter estimation

The likelihood is defined as the joint distribution of the data as a function of the unknown
parameters. When the data are independent or when the dependence in the data is limited, the
likelihood is readily available under appropriate assumptions on the factors in terms of which the
joint distribution is expressed. In practice, however, things tend to be more complicated as the
nature of dependence is not always known or even understood and consequently the likelihood is
not within an easy reach (Benjamin & Konstantinos, 2002). This gives the impetus for seeking
suitable modifications usually by means of conditioning. Partial likelihood is an example of such

a modification.

If Y be a time series {y}, t=1,..., N, with a joint density yy = (y; ... ym) parametrized by a
vector parameter @. In addition, if some auxiliary information (Al) is known throughout the period

of observation. Then the likelihood is a function of @ defined by the equation
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N
fo(y1 ... y1|AD = f5(y;[AD Hfm(%/)ﬁ&’z s Y1, A
t=2

Equation 2

The main difficulty the above likelihood function is that quite generally, if no additional
assumptions are made, as the series size N increases so does the size of @. Hence, instead of getting
more and more information about a fixed set of parameters, we obtain information but about an
increasing number of parameters, a fact which raises consistency as well as modeling problems
(Benjamin & Konstantinos, 2002). This is rectified when the conditional dependence in the data is
limited and the increased amount of information obtained by a growing time series size concerns
a fixed set of parameters. The appropriate assumptions and modifications of the general likelihood
above are called for to accommodate dependent time series data such as the notion of partial

likelihood (Benjamin & Konstantinos, 2002).
2.3.5. Partial likelihood function

If y;is a response time series with the corresponding p—dimensional covariate process, Z;_; =
(Zt_l'l Zt_l'p) then define Ft—1 = 6{Y;_1, Yt—2,...» Zt—1, Zt—2,... ;. The conditional expectation of

the response given the past is defined as U; = E[Y;_1, | Fi_1,].
2.3.6. GLM for count data

GLM for counts have as it’s random component the Poisson Distribution. Observations of
dependent counts can in many cases be modeled successfully through the Poisson distribution. The

conditional density of the Poisson distribution with mean u; can be written as.

f(yt, 01, @/Fc-1) = exp(ytlogu, —uy) - logy D) , t=1,...,N,

Equation 3
where E(y/Fi_1) = u;, b(0) = u=exp(6,), v(uy)=u;, @ = 1 and w=1,
the conical link is given by g(u,) = 0(u,) = n, = Z{B.
if Z{_; = (1, X, X¢_1)' then the link function becomes

log(u;) = By + Byx1 + ByY;_»
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with X, standing for some covariate process, or a possible trend, or a possible seasonal component.
2.3.7. Modeling Rates: Including an Offset in the Model

Often the expected value of a response count Y; is proportional to an index t;. For instance, t;
might be an amount of time and/or a population size, such as in modeling crime counts. Or, it
might be a spatial area, such as in modeling counts of a particular animal or plant species. Then
the sample rate is Y;/t;, with expected value ;. With explanatory variables, a loglinear model for

the expected rate has the form

p
log(yilty) = z Bin,j
=1

Equation 4

Because log(y;lt;) =log(y;) —log(t;), the model makes the adjustment — log( ¢t;), to the log link
of the mean. This adjustment term is called an offset. The fit corresponds to using log( t;), as an
explanatory variable in the linear predictor for log(u;) and forcing its coefficient to equal 1. For

this model, the expected response count satisfies

Equation 5

The mean has a proportionality constant for t; that depends on the values of the explanatory

variables.
2.3.8. Negative Binomial GLMS

For the Poisson distribution, the variance equals the mean. In practice, count observations often
exhibit variability exceeding that predicted by the Poisson. This phenomenon is called

overdispersion.

20



2.3.9. Over dispersion for a Poisson GLM

Common reason for overdispersion is heterogeneity: at fixed levels of the explanatory variables,
the mean varies according to values of unobserved variables. Overdispersion is not an issue in
ordinary linear models that assume normally distributed y, because that distribution has a separate
variance parameter to describe variability. For Poisson and binomial distributions, however, the

variance is a function of the mean.

Overdispersion is common in the modeling of counts. Suppose the model for the mean has the
correct link function and linear predictor, but the true response distribution has more variability
than the Poisson. Then the ML estimators of model parameters assuming a Poisson response are
still consistent, converging in probability to the parameter values, but standard errors are too small.

Extensions of the Poisson GLM that have an extra parameter account better for overdispersion.
2.3.10. Negative Binomial as a Gamma Mixture of Poissons

A mixture model is a flexible way to account for overdispersion. At a fixed setting of the
explanatory variables actually observed, given the mean A, suppose the distribution of y is
Poisson(4), but A itself varies because of unmeasured covariates. Let u = E(4). Then

unconditionally,

E(y) =E[E(y | 1)]=E(1) =wu,

Equation 6
var(y) = E[var(y | A)] + var[E(y | A)]=E() +var(d)=pu +var(1)>pu.

This setup is called a mixture model for count data: suppose that given A, y has a Poisson(4)
distribution, and A has the gamma distribution. Recall that the gamma distribution has E(1) = u
and var(4 ) = p 2k for a shape parameter k > 0, so the standard deviation is proportional to the
mean. Marginally, the gamma mixture of the Poisson distributions yields the negative binomial
distribution for y. Its probability mass function is

PO k) = o (L) (X ), y=1230e

u+k u+k

Equation 7
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With k fixed, this is a member of an exponential dispersion family appropriate for discrete

variables with natural parameter log(ﬁ).

ify =k then E(y)=pu, var(y)=pu +y u?

The index y > 0 is a type of dispersion parameter. The greater the value of y, the greater the
overdispersion relative to the Poisson. As y — 0, var(y) — p and the negative binomial

distribution converges to the Poisson.

The negative binomial distribution has much greater scope than the Poisson. For example, the
Poisson mode is the integer part of the mean and equals 0 only when g < 1. The negative binomial
is also unimodal, but the mode is 0 when y > 1 and otherwise it is the integer part of (1 —y).

The mode can be 0 for any u .
2.3.11. Negative Binomial GLMs

Negative binomial GLMs commonly use the log link, as in Poisson loglinear models, rather than
the canonical link. For simplicity, we let the dispersion parameter ¥ be the same constant for all n

observations but treat it as unknown, much like the variance in normal models. This corresponds

to a constant coefficient of variation in the gamma mixing distribution, /var(A) / E(QA) = VA

The loglikelihood function for a negative binomial GLM with n independent observations is

1 1

L(B,Ay) = Zi_l[logf‘ (yi + %) — logl’ (i) —logl'(y; + 1)] + Z

= i=1

)\ui
14+Au;

[yilog< ) —% log(1 +

+7\ul-)]

Equation 8
) p
where u; is a function of B through n' = g(u;) = B.x. ;with the link function g.
2 g g 2 N 7L g
]:

2.3.12. Negative Binomial Model with Variance Proportional to Mean

An alternative negative binomial parameterization results from writing the gamma density formula

with ku as the shape parameter,
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ku

I'(ku)

fALku) = exp(—kD)A1 1 >0

Equation 9

So E(4) = u and var(4) = pu/k. For this parameterization, the gamma mixture of Poisson

distributions yields a negative binomial distribution with

E(y) = p, var(y) = u (1 + k)k.

The variance is now linear rather than quadratic in pu . It corresponds to an inflation of the Poisson

variance, converging to it as k — oo.

The two parameterizations of the negative binomial are sometimes denoted by NB1 (linear) and
NB2 (quadratic). Only the NB2 falls within the traditional GLM framework, being expressible as
an exponential dispersion family distribution, and it is much more commonly used. Unlike the
NB2 model, for an NB1 model B and k are not orthogonal parameters, and " is not a consistent
estimator when the model for the mean holds but the true distribution is not negative binomial

(Cameron and Trivedi 2013).
2.3.13. Model diagnostics

Diagnostics in regression analysis consists of procedures for exploring and testing the adequacy
and goodness of fit of fitted models. In the context of generalized linear models this refers in
particular to the examination of several types of residuals and deviance analysis. Deviance analysis
is carried out routinely through a statistic called the scaled deviance and the closely related

information criteria AIC and BIC.
2.3.14. Model selection

Evaluation and selection among several competing models is based on Akaike’s information
criterion (AIC). The AIC criterion is defined as a function of the number of independent model

parameters,

AIC = —2logPL(B) + 2p,

Equation 10
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where ,B is the maximum partial likelihood estimator of B and p is the “model order”, p = dim(B).

We choose the model corresponding to p that minimizes AIC.
2.3.15. Residuals

Residual means a certain deviation of a fitted from an observed value. Residual analysis is
important in assessing the goodness of fit-how well the fitted model explains the observed data-of
aregression model, and in judging the impact and significance of covariates on the response. There
are several ways to define residuals in the context of time series following generalized linear

models. The most obvious definition is that of the so called raw or response residuals
ét = Yt - ﬁt, t:],...,N

Three popular additional types of residuals, Pearson, working, and deviance, are defined in terms
of the raw residuals as follows. The Pearson residuals are the standardized version of raw or
response residues obtained by dividing each raw residual by the square root of the estimated

variance to obtain the standardized Pearson residuals as follows;

A Y_A
fp=—2 t=1,...N

NIZ(D)

Equation 11

The working residuals are a different standardized version obtained after fitting a working model,

which is an initial approximation to the true model,

wr,=—"-—-=1¢=1,..,N.
due/dnyg

Equation 12

where dy,/dn,is evaluated at B. The deviance residuals are given by

d, = sign(Y; — ﬁt)\/z[lt(%) - .(L)] t=1,...N

Equation 13
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where the sum of squares of deviance residuals is equal to the deviance statistic.
2.3.16. Distributed lag non-linear model

Oftentimes, the effect of exposure to environmental stressors or other events is not limited to the
time period when it occurs, but is delayed in time. That is the case of climatic variables effects (as
adverse temperatures) that may last in time, spreading over several days. That being said, the
impact of the environmental stressors at a given time may be explained by a combination of past
exposures over several time lags, once it depends simultaneously on the intensity and timing of
the exposures. A common way to model a non-linear effect with this additional time dimension is

through distributed lag non-linear models (DLNMs)

The family of distributed lag non-linear models was developed to simultaneously estimate the non-
linear dose-response dependencies and the delayed effects of temperature on mortality. It is based
on a bi-dimensional space of functions, called “cross-basis”, that describes the shape of the
relationship simultaneously along the space of the predictor - temperature, in this case - and along

its lag dimension, i.e., the time structure of the exposure—response relationship.

Initially, distributed lag models (DLMs) were developed for time series analysis and extensively
used in econometric and social sciences before being adapted to epidemiology research. This
family of models used to account for linear dependencies only, so Armstrong extended this
methodology to distributed lag non-linear models (DLNMs), and it has since been used to
simultaneously estimate the non-linear and delayed effects of temperature and air pollution on
mortality or morbidity Hence, to understand a DLNM well one must first understand DLMs. A
DLM is a dynamic model that estimates the effect of a regressor x on a response y over different

time moments t. It can generally be represented as follows:
Ve = a + Boxl + let_1+..+Bth_L+u
Equation 14

where a is the intercept, u is a stationary error term and L is the maximum lag allowed (L > 1).

Each of the coefficients Bl stands for the weight of the respective lag1 (1=0, 1,...,L).

B, coefficients may be interpreted either from a backward standpoint - the effect of the past

exposition X;_; on the present moment response y;, i.e., the effect felt today due to the exposition
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L days before, lag =1 -, or from a forward standpoint - the effect of the current exposition x, on
the future response L moments later, y;, 4, i.€., the effect that today’s exposure will cause L days
from now . Thus, the coefficients B, represent the lag weights and all together define the lag

distribution.

Assuming there is a temporary change on the regressor variable x, which increases one unit only
in moment t, X, then its immediate effect, y; , will have an increase equal to the value of By. On
the next moment (t+1) the effect y;, 1, will increase B, units. After that the effect y,,; will increase
B, units and so on, until the maximum lag, L, when the effect y,,; increases By, units. This is

called the marginal effect of x on y.

Another hypothesis to consider would be a permanent change in the regressor variable. Assuming
it increases one unit in moment t and remains that high in all future moments, then its immediate
effect y, will also have an increase equal to the value of By. However, in the future moment (t+1)
the effect y,,; will increase By + B; values, after which the effect y;,, will increase 0 +p1 +p2
values and so on, until the maximum lag L, when the effect y,,; increases B0 +B1 +f2 +...+fL

values. This is called the cumulative effect of x on y.

According to Gasparrini (2014) and assuming there is a linear exposure—response relationship, a
general notation to describe the dependency in terms of exposure history to x evaluated at time t

as:

L
S(x,t) = ]L X,_w(L) dL

0
Equation 15
where w(L) represents the weighting basis-function applied to constrain the coefficients B;. w(L)

is directly defined in the lag dimension and determines the lag-response function that models the

lag-response curve associated with exposure x.

S(x,t) will then be included in a generalised linear model as a sum of linear terms, with related
parameters 1. The function S(x, t) may be rewritten following a matrix notation, by applying the

basis transformation over the lags - w(l) - and then combining it with the vector of expositions q.
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S(xun) = q;n = w¢n

Equation 16

where

e ;= [Xp ., X1, - Xe—]T is an original vector of ordered exposure histories,
corresponding to a column of the nx(L+1) matrix Q. As such q; changes along time,
depending on the moment t when it is defined.

e L=]0,..,]..,L]Tis a vector of lags corresponding to the L+1 columns of Q

e Cisa (L+1)x v matrix of lag-basis variables originated from the application of the basis-
function to the lag vector 1 (where the basis-function is defined as w(l) with dimension v;);

e 1 is a vector of unknown parameters.

T

Hereupon, w* is a vector from the matrix W = QC, which is the matrix of the v| transformed

variables (obtained from the application of a basis lag function to the original lag vectors 1 - w(l) -
combined with the original exposure histories, q;). This v; basis variables from the matrix W will
be included in the design matrix to allow the estimation of the unknown parameters #. The

estimated parameters 71 define the previously mentioned coefficients B,
B =ch
Equation 17

The extension from DLM to distributed lag non-linear models (DLNM) was achieved by adding

an exposure—response non-linear function along the dimension of the predictor x.
S(x, B) =z{B
Equation 18

On this function, z{. is the t' line of the matrix Z - ay X v, basis matrix resulting from the
application of the basis-function - called f(x), of dimension v, , to the original vector of exposures

X

Therefore, a generalization to DLNM will be adding a basis-function along the dimension of the

predictor x to the already mentioned basis-function along the dimension of the lag [ in;
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L
S(x,t) = fL X,_yw(L) dL

0

Equation 19

where f(x) is the exposure-response function with dimension v, and w(l) is the previously
mentioned lag-response function. These are the two basis-functions, which may be chosen
independently of each other. The basis-functions impose a set of completely known

transformations of x, generating new variables, called basis variables.

The representation above assumes that the functions f{x) and w(l) are independent, i.e., that the
exposure-response function is the same along all the lag space and that the lag structure is equal
for all values of x. If we relax this assumption, admitting an interaction between the value of the

predictor and its timing, then it may be more flexibly represented as:

L
s(x,t) =f f-w(x_,_;,L)dL
t0

Equation 20

Following this notation, f'w(x,l) is a bivariate function, that models simultaneously the exposure
response structure along x and the lag-response structure along 1, defining the exposure—lag—
response function . In other words, s(x,#) is a linear combination of the basis-functions f{x) and
w(l), integrated over the lag dimension, which defines a bi-dimensional space of functions that

Armstrong (2006) called cross-basis function and which represent the core of DLNMs.

P
Each basis-function (f(x)= Y&_, B,X, and w(l) = Z Bpl, ) is fitted following the chosen
p—-1

function distribution, f{) and w() respectively, originating B/P basis variables from the original
ones. Then the new transformed variables will enter the regression model, instead of the original
variables. The number of basis variables, B and P, determines the degrees of freedom (df) of the
respective curves. B df for the dimension of the predictor and P df for the dimension of the lags.
So the degrees of freedom of the cross basis-function is given by the product of the number of

basis variables from f{x) and from w(l), BxP.
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The cross-basis function is better represented using matrix notation as Gasparrini et al (2021). Let
R bean xv, x(L+I)array of the lagged occurrences of each of the basis variables of x, keeping

C as the matrix of basis variables for the lag dimension,

Vx VL

s(x, B) = Z*Z Iy Ckljx = W I

j=1 1=l
Equation 21

where 1y is the vector of lagged exposures for the time # transformed through the basis-function ;

and cy is the vector of lags transformed trough the basis-function k. Now, w{ will be defined as
the vector obtained by applying the v, -vi cross-basis functions to x; . As such, both basis-

functions are then simultaneously used to create the v, v, basis variables, stored in the W matrix.

The cross-basis flexibly describes the relation along x, allowing for linear and non-linear exposure-
responses, combining it with the distributed lag-effects (an additional time-dimension). So, the v
-v|, basis variables originated from the cross-basis function will enter the regression model instead

of the original variables

We may now generally represent a basic DLNM, using a cross-basis function to express the non-
linear relation between the predictor variable x and the response variable y along time. Following

the notation of Gasparrini et al (2021), we obtain:

J k
glu) = a+ Z Sj (Xxj; nj) + Z Yk Utk
j=1 k=1

Equation 22

where u; = E(y,) and g is a monotonic link function; a is the intercept; s; is the cross-basis function
that denotes smoothed relationships between the variables x,; and the linear predictor - defined by
the parameter vectors n; , and uy, are other predictors variables with linear effects over Y,

measured by the coefficients yy.
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In this family of models, ¥ is assumed to follow a distribution from the exponential family. The
two basis-functions used in the cross-basis s; may be chosen from a wide variety of modelling

options. Those options are:
Exposure space:

e apolynomial function, whose order must be determined;

e a stratified model, with chosen strata intervals;

e aspline function, for which the number and placing of knots must be chosen;
e linear thresholds;

Lag space:

e apolynomial function, whose order must be determined;

e a stratified model, with chosen strata intervals;

e aspline function, for which the number and placing of knots must be chosen;

e the coefficients may be unconstrained,
The options selected will determine the flexibility of the model. Simpler models (as linear
thresholds) are usually less flexible but easier to interpret than the more complex ones (as natural
cubic splines functions), while the latter may better adjust to the data and capture most of the

relationship details and are less likely to leave residual confounding.

Other predictor variables may be included in the model. For instance, as happens in order to control
for confounding, a smooth function of time to capture long-time trends and/or seasonality and

some categorical variables, as day of the week are applied.

Also, the analysts must determine the maximum lag, L, which will depend on how long they
believe an effect may be sustained in time. For instance, the maximum lag allowed should be
higher if harvesting effects are expected, which may reflect on negative coefficients for longer

lags.

All options have advantages and disadvantages, so the choice will depend on the purpose of the
analysis, on a priori assumptions and/or the fitting of the model. The model fitting criteria mostly
used in this are the Akaike’s information criteria (AIC) and the Bayesian information criteria

(BIC).
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2.4. Methods and Materials
2.4.1. Study Context

Mangochi district is located in the southern region of Malawi and had a total population of
1,148,611, 6.5% of national population in 2018 (Malawi Housing and Population Census, 2018).
It is a lakeshore district which is among 11 high malaria burden districts (Government of Malawi,
2020). It comprises of 1 district hospital and 41 health centers and several village clinics providing
malaria services. All suspected uncomplicated malaria cases are tested using malaria rapid
diagnostic test (mRDTs) at all levels (central, district, health center, clinic, community)
(Government of Malawi, 2020). Light microscopy is used to test suspected complicated malaria
cases (where capacity allows), diagnose severe malaria cases and confirm malaria treatment failure
(Government of Malawi, 2020). Community case management aims to address three main
childhood killers namely; malaria, pneumonia and diarrhoea. It promotes early recognition, prompt
diagnostic testing, and appropriate treatment of malaria among children under five years in the
home or community. It is an equity-focused strategy that aims to improve access for under-five

children in hard-to-reach areas thereby improving timely and effective treatment of malaria.
2.4.2. Response Variable: Malaria incidence

Malaria is routinely collected at health facility level and uploaded into District Health Information
System on monthly basis aggregated by health facility, district and national level. Reported malaria
cases are cases confirmed through mRDT and Microscopy, unconfirmed malaria cases (clinical
cases without confirmation) were excluded in this analysis. Malaria monthly data between 2015

and 2020 for Mangochi district was provided by national malaria control program in Malawi.
2.4.3. Primary Covariates: Climate data

In this study, data for monthly meteorological variables, including the daily maximum and
minimum temperature; relative humidity; and the amount of rainfall were obtained from

department of metrological services and climate change.
2.4.4. Distributed Lag Non-Linear Model

The outcome variable in this study was the number of monthly confirmed malaria cases spanning

for a period of 6 years between January 2015 to December 2020. The explanatory variables were
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climate factors; temperature (monthly minimum temperature and monthly maximum temperature),
monthly rainfall (mm) and monthly relative humidity from January 2015 to December 2020. All

the climate variables are continuous variables.

A time series regression was applied to model mean monthly malaria incidence as outcome
variable and climate factors as explanatory variables expressed as follows. Let Y; be monthly

malaria cases, then

Y;~NegBinomial(u;)

J
log(u,) = a + z Si(x¢, Bj) + XK_1 Yr(ze) + s(time, p) + log(population)
j=1

Equation 23

where y; is a series of monthly malaria cases spanning for a period of 72 months, t=1,...72, u; is
expected monthly malaria cases, log(u;) is a log link function, o is an intercept term and
s(time, p) is a natural cubic splines to control for seasonality in malaria time series. Non-linear

effects of climate are modelled using distributed lag non-linear model (DLNM) specified by
J

function Z S; (xt, 1 Bj). The function S; specify the relationships between the meteorological
j=1

variables X; at lag month j and the linear predictor defined by the parameter vectors B; (Gasparrini,
2011). The variables z; are other predictors with linear effects specified by the related coefficients
Yy, such as indoor residue spray (IRS) intervention in this study. A negative binomial family
account for over dispersion of monthly malaria incidence while population offset to control for

changes of population over time.

Data was analyzed using R version 3.2.4 (Team RC. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. 2017).

2.5. Results

2.5.1. Descriptive statistics

A total of 1,935,056 malaria cases were reported between 2015 and 2020, with 860,745 cases
occurring in children under the age of five and 1,074,311 cases occurring in individuals aged five

and above. The highest number of malaria cases in a single year was 418,394, reported in 2018,
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while the lowest number of cases was 210,279, reported in 2020. On a monthly basis, the average
number of malaria cases was 26,876. The highest number of cases was observed in May 2018,
with 53,449 cases, while the lowest number of cases was reported in August 2016, with 11,124

cases. The yearly averages and standard deviations for climate variables are provided in Table 1.

Table 1 Yearly means and standard deviations for climate variables

2015 2016 2017 2018 2019

2020
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
Malaria 20317 5699 24345 11155 30872 11776 34866 13636 33332 12125 17523 3503
Max Temp 31 3 32 3 31 2 31 3 30 2 31 3
Rainfall 86 156 64 90 97 121 55 62 87 115 54 83
Humidity 64 16 62 14 66 15 68 13 67 14 64 13

Monthly patterns of climate variables between 2015 and 2020 is as shown in Figure 1 below.

Rainfall pattern between 2015 and 2020 in Mangochi
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Figure 1 : Monthly pattern of climate variables between 2015 and 2020
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Exploration of malaria seasonal trend visually coincide with seasonal trends of climate variables
as shown in Figure 2a-b-c-d. This pictorial coincidence of climate variables and malaria cases

suggests possible seasonal correlation.

Malaria and Rainfall Seasonal Trends
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Figure 2: Seasonality of malaria cases and climate variables

Furthermore, scatterplots between malaria cases and climate variables depicts a linear pattern
between humidity and malaria cases as shown in Figure 35 but does not show obvious patterns

with rainfall and temperature Figure 3a-c-d.
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Figure 3: Association between malaria cases against climate variables and lowess line

2.5.2. Distributed Lag Non-Linear Model building

Table 2 shows variable correlation matrix which shows that malaria cases correlated positively
with rainfall and humidity at lag-0, (r 0.112, 0.567), while a negative correlation was observed
with minimum and maximum temperature (r -0.284 and -0.078). As reported by Chuang et al
(2017), collinearity, or excessive correlation among explanatory variables, can complicate or
prevent the identification of an optimal set of explanatory variables for a statistical model (Chuang
& Ting, 2017). In this study, correlation between climate variables was assessed using pearson
correlation to identify climate variables that have excessive collinearity. The correlation matrix in
Table 2 shows positive correlation between variables: maximum and minimum temperature
(correlation coefficient 0.813), minimum temperature and rainfall (correction coefficients 0.536)

and humidity and rainfall (correlation coefficients 0.512).
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Table 2: Cross correlation matrix of climate variables

Variables Malaria Rain  Humidity Max Tem  Min Tem
Total malaria cases 1.00 0.112 0.567 -0.284 -0.078
Rain 0.112 1.00 0.512 0.133 0.536
Humidity 0.567 0.512 1.00 -0.377 0.122
Maximum Temperature -0.284 0.132 -0.377 1.00 0.813
Minimum Temperature -0.078 0.537 0.122 0.811 1.00

Variance inflation factor (VIF) was further applied to assess the impact of collinearities in the final
model. Qingin et al (2018) recommended dropping high correlated variables with VIF above 5 to
minimize impact on model sensitivity (Qinqgin, Runzi, Shannon, Cheng, & Yafei, 2018). The

variance inflation factor is given by the formula below.

VIF) = —
J

Equation 24

where the VI F for variable J is the inverse of R? from the regression. A VIF is calculated for

each explanatory variable and those with high values are removed.

The VIF results showed high VIF above 5 for minimum and maximum temperature as shown in
Figure 4a. Following Qingin recommendation, the two highly correlated climate variables cannot
be combined as regressors in a model and therefore minimum temperature which has highest VIF
was dropped and the resultant model has reduced variance inflation factor among all climate

variables as shown in Figure 4b.
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Figure 4: VIF values for climate variables

2.5.3. Exposure Lag Response relationship
Model specifications in the exposure-lag dimensions for climate variables were selected among a
wide range of linear and no-linear functions by examining Akaike Information Criterion (AIC). A

total of 18 model candidates with different specifications in exposure-lag dimensions were

assessed as shown in Table 3.
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Table 3 Exposure-lag response specifications for climate variables

Exposure-Lag response Exposure- Lag response Exposure Response(Degree and

o response (Degree and AIC BIC
combination w(l) Knots)

f(x) Knots)

Rainfall/Precipitation
Linear-Linear Linear Linear 27370 27409.69
Linear-Polynomial Linear Polynomial 27330 27372.91
Polynomial-Linear Polynomial Linear 26650 26698.35
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26410 26466.76
Natural Cubic Splines NS Linear Quantiles 26610 26663.01
function-Linear
Natural Cubic Spline NS Polynomial  Quartiles 2D 26310 26369.45
function-Polynomial
Humidity
Linear-Linear Linear Linear 27220 27261.94
Linear-Polynomial Linear Polynomial 27150 27198.23
Polynomial-Linear Polynomial Linear 27140 27190.62
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26780 26839.57
Natural Cubic Splines NS Linear Quartiles 26920 26972.65
function-Linear
Natural Cubic Spline NS Polynomial  Quartiles 2D 26610 26677.69
function-Polynomial
Maximum Temperature
Linear-Linear Linear Linear 27390 27430.31
Linear-Polynomial Linear Polynomial 27360 27402.27
Polynomial-Linear Polynomial Linear 27180 27230.17
Polynomial-Polynomial Polynomial Polynomial 3D 2D 26830 26884.8
Natural Cubic Splines NS Linear Quartiles 27160 27215.84
function-Linear
Natural Cubic Spline NS Polynomial  Quartiles 2D 26830 26899.46

function-Polynomial
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The examination of AIC from different functions in the exposure—lag dimension for climate
variables showed that cubic splines in exposure dimension and polynomial in lag response
dimension have lower AIC across all the three climate variables. The natural cubic splines with
knots placed at equal intervals in exposure space and polynomial in lag response dimension have
lowest AIC. This confirms the existence of non-linear relationship in the predictor space. Finally,
basis variables were generated and added in the final model using backward selection method. The
backward variable selection showed model improvement associated with incorporation of climate

basis variables.

The final specification in the exposure dimension for climate variables was a natural cubic spline
with knots placed at equal intervals and polynomial of degree 2 in the lag response dimension.

Seasonality is controlled by natural cubic splines.

Indoor Residual Spraying (IRS) intervention period was also included as a predictor in the final
model. To control for changing population, an offset of log transformed population was included
in the final model. GLM negative binomial family was applied to account for over dispersion of

monthly malaria cases.
2.5.4. Lagged effects of rainfall

The exposure lag response relationship between rainfall and malaria incidence is illustrated in
Figure 5a which shows nonlinear relationship between precipitation and malaria incidence.
Increasing precipitation is associated with increased malaria risk which peaked at lag 0 when
monthly rainfall reached maximum of 541mm, RR 2.4314162, CI 95% (2.0554548, 2.8761443)
compared to risk when there is an average rainfall of 74.5mm. Predicted effects are sustained
across all the 3 lags and are more certain (narrow confidence interval) as shown in Figure 5d.
Figure 5b is a heat map showing virtual representation of relative risk which also indicates high

risk associated with increasing rainfall and visually peaked at lag-0.
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Figure 5: 3D relationship, relative risk and lag specific effects between malaria cases and
rainfall

2.5.5. Lagged effects of humidity

The effect of humidity is illustrated in the Figure 6a which shows nonlinear relationship between
humidity and malaria incidence. Increasing humidity is associated with increased relative risk
which peaked at lag 0 (same month) when relative humidity reaches 84, RR 2.0537649 CI
(1.9435101, 2.1702744) compared to relative risk at mean humidity. The overall effects of
humidity are more certain (narrow confidence intervals) and sustained up to lag-2 as shown in
Figure 6d. Figure 6b is a heat map indicating virtual representation of relative risk which also

indicates high risk associated with increasing humidity and visually peaked at lag-0.
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Figure 6: 3D relationship, relative risk and lag specific effects between malaria cases and

humidity

2.5.6. Lagged effects of maximum temperature

The relationship between maximum temperature and malaria cases is shown in Figure 7a which

depicts nonlinear exposure lag response relationship. Increasing maximum temperature is

associated with increased risk which peaked at lag 0 (same month) when temperature reach 34

degrees Celsius, RR 1.3907299 CI (1.3523290, 1.4302212) and sustained up to lag 2 as shown in

Figure 7d. Predicted effects are more certain, narrow confidence intervals, across all lags. Figure

7b is a heat map showing virtual representation of relative risk which also indicates high risk

associated with increasing humidity and visually peaked at lag-0.
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2.6. Discussions

The observed nonlinear relationship between rainfall and malaria incidence highlights the
influence of precipitation in the breeding and survival of mosquito vectors consistent with many
studies in this area. The positive association between increasing precipitation and malaria risk
confirms that areas with higher rainfall are more conducive to mosquito breeding, leading to a
higher prevalence of malaria cases. As reported by Yoonhee et al. (2019), rainfall is considered
one of the main weather factors determining malaria epidemics. Also, the observed 0-2 months
delayed effect of rainfall is consistent with results reported by some studies such as a paper by Jae
et al (2012) who suggested that lagged estimates of the effect of rainfall on malaria are consistent

with the time necessary for mosquito development and P. vivax incubation. More importantly, the
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observed peak(double) of malaria risk immediately following periods of extreme rainfall
conditions, highlights the significance of short-term effects of rainfall and possible outbreaks

following extreme rainfall events.

The impact of humidity on malaria incidence has been extensively studied, and the study findings
reaffirm the positive association between humidity and malaria risk. The observed immediate peak
in malaria risk (same month), coinciding with extreme conditions of humidity, supports the notion
that humidity acts as a crucial factor in influencing mosquito populations and subsequent malaria
transmission. This result is also consistent with Philippe et al.'s (1995) report, which states that
higher levels of humidity prolong the lifespan of mosquitoes and enable them to infect more

people.

Similarly, the nonlinear relationship between temperature and malaria cases is consistent with
previous research linking the disease and temperature conditions. The observed peak in malaria
risk following high temperatures emphasizes the importance of temperature in shaping the
dynamics of malaria transmission. As reported by Gunda et al. (2017), temperature affects malaria
transmission by regulating the rate of development of mosquito larvae, which in turn influences

mosquito survival rates.

In general, the results revealed an immediate peak (same month) in malaria risk following extreme
weather conditions, highlighting the importance of short-term effects of climate. The risk of
malaria immediately doubles with extreme rains and humidity compared to average weather
conditions. This is consistent with Florence et al.'s (2019) report linking climate extreme events
with outbreaks. The study also found delayed but diminishing effects of climate conditions from
0-2 months lag, indicating that the impact of climatic variables persists over multiple time
intervals. This result is consistent with a report by Gunda et al (2017) which showed significant
association between malaria incidence and the climatic variables at specific lag periods. (Gunda,
Chimbar, Shamu, Sartorius, & Mukaratin, 2017). Similar to this study, the paper found that
precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly
associated with incidence at specific lag periods in Ntalale ward. DLNM results suggest a key risk
period in current month, based on key past climatic conditions. Mostly, the findings in this study
are consistent with the existing literature, supporting the notion that climate variables play a crucial

role in the transmission dynamics of malaria. Yoonhee et al.'s (2019) similarly reported that global
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and local climate change can alter the spatial and temporal distribution of malaria, increasing
opportunities for malaria transmission in traditionally non-malarious areas. Therefore, climate
change has helped to create conditions that are conducive to vector breeding in certain areas of

Malawi, which can help explain the observed shifts in malaria epidemiology.

Overall, the observed delayed effects of climate factors highlight the significance of climate
conditions in the distribution and transmission of malaria. For instance, a study by Odgan et al.
(2017) reported similar findings, indicating that diseases such as malaria are intrinsically sensitive
to weather and climate. Moreover, our study provides additional evidence by incorporating lag
effects, illustrating that the impact of these climatic variables persists over multiple time intervals.
The results of the study suggest that the climate conditions experienced in the preceding months

play a crucial role in predicting the incidence of malaria in the upcoming months.

The narrow confidence intervals observed in our predicted effects indicate a greater certainty in
the association between climatic factors and malaria incidence. This suggests that the relationships
identified are robust and consistent across different lag times, lending further credibility to the

findings.
2.7. Limitations and recommendations

While the study contributes to the existing literature, it is important to acknowledge some
limitations. Firstly, this study focused on a specific geographical region (Mangochi district), and
therefore, caution should be exercised when generalizing the results to other locations. Secondly,
the use of long monthly lags may affect the accuracy of the analysis, especially when climatic
conditions exhibit significant variations over time. It would be beneficial to further investigate the
effect of shorter lags, such as weekly data, to capture more immediate associations between climate
and malaria incidence. Thirdly, the analysis did not account for important socio-economic factors
and other potential confounders that can influence malaria transmission, such as local mosquito
control programs. Unfortunately, the data on these factors were not available for inclusion in this
study. Future research should strive to incorporate these variables to gain a more comprehensive
understanding of the complex interplay between climate, socio-economic factors, and malaria

transmission dynamics.
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2.8. Conclusion

In conclusion, the study provides further evidence supporting the nonlinear relationship between
climate conditions and the risk of malaria. These findings have implications for malaria control
and prevention strategies, highlighting the importance of climate monitoring and forecasting in
targeted interventions. By considering the impact of climatic factors, public health authorities can
develop proactive measures to mitigate the spread of malaria, particularly in regions prone to
extreme weather events. Continued research in this field will contribute to a better understanding
of the complex interactions between climate and malaria transmission dynamics, ultimately aiding

efforts to reduce the burden of this disease.
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CHAPTER 3

EVALUATING IMPACT OF INDOOR RESIDUE SPRAY (IRS) MALARIA
INTERVENTION WHILE ACCOUNTING FOR LAGGED EFFECTS OF CLIMATE
FACTORS IN MANGOCHI, MALAWI

3.1. Introduction

In Malawi, indoor residue spray (IRS) remains key in malaria prevention and control although its
implementation is generally low. It is a population level intervention applied at specific period of
time which is expected to interrupt long-time trend of malaria in the post-intervention period. Due
to ethical and practical barriers, large interventions such as indoor residue spray (IRS) do not have
randomized control groups which limit the use of other statistical models such as randomized
control trials (RCT) to model effects of an intervention. An attempt to randomize and establish
control groups within indoor residue spray (IRS) implementation area may result in partial indoor
residue spray (IRS) implementation which is prohibited as it promotes vector resistance (Vector
Control Strategy-Malawi, 2015-2019). In the absence of randomization, interrupted time series
(ITS) is principally appropriate tool for analyzing observational data where full randomization, or

a case-control design, is not affordable or possible (Evangelos, Tim, David, & Iain, 2015).

ITS models such as segmented time series regression can be used to evaluate effectiveness of
population-level health interventions such as indoor residue spray (IRS) that have been
implemented at a clearly defined point in time (Lopez, Soumerai, & Gasparrini, 2018). The design
takes advantage of natural experiments whereby an intervention is introduced at a known point in
time and a series of observations on the outcome of interest exist both before and after the
intervention (Lopez, Soumerai, & Gasparrini, 2018). ITS accounts for potential risk factors such
as long time trends to hypothesize expected scenario under which an intervention had not taken
place and the trend continues unchanged (‘expected’ trend, in the absence of the intervention, given
the pre-existing trend) which is referred to as the ‘counterfactual’. Interrupted time series designs
are immune to many of the threats to validity compared to other observational designs (Wagner,

Soumerai, Zhang, & Degnan, 2002).
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In this study, a segmented time series regression was applied to evaluate impact of indoor residue
spray (IRS) malaria intervention while controlling for delayed effects of climate conditions. Nested
models with and without lagged climate variables were compared to select the best model that
predict malaria cases. In addition, this study examined the influence of lagged climate variables
on parameter estimates when assessing the effectiveness of indoor residue spray (IRS). The model
was further used to project the expected outcomes if the intervention had not been implemented.
Furthermore, the model can be utilized to predict potential future epidemics based on past climate

experiences in Mangochi district.
3.2.  Literature review

Although randomized controlled trials (RCTs) are considered the ideal approach for assessing the
effectiveness of interventions, many interventions trials can be prohibitively expensive
(Evangelos, Tim, David, & lain, 2015). Evangelos et al (2015) emphasised that even well designed
RCTs can be susceptible to systematic errors leading to biased estimates, particularly when
generalizing results to “real world” settings. Observational studies address some of these
shortcomings, but the lack of researcher control over confounding variables and the difficulty in
establishing causation mean that conclusions from studies using observational approaches are
generally considered to be weaker. Evangelos further pointed out to the eligibility criteria of RCT
which is generally limiting between ranges from 3.5% to 50.7% in some studies due to presence
of other constraining conditions. Evangelos et al (2015) however mentioned the strength of quasi-
experimental study designs such as ITS which are able to estimate causal effects using
observational approaches to evaluate the longitudinal effects of interventions, through regression
modelling. ITS can be applied in the absence of randomization and is principally a tool for
analyzing observational data where full randomization, or a case-control design, is not affordable
or possible. Although other assumptions limit ITS application such as presence of linear trends,
the intervention is introduced gradually or at more than onetime point, external time varying effects
or autocorrelation (for example, seasonality), or the characteristics of the population change over
time, such limitations can be potentially dealt with through modelling if the relevant information

1s known.

In another study to assess pre-ambulance care program, Monica estimated change in intercept and

slope from pre- to post-intervention using segmented regression. The paper mentioned major
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strengths of segmented time series regression which included its ability to distinguish the effect of
the intervention from secular change, that is, change that would have happened even in the absence
of the intervention (Monica, Joanne, Craig, & Jeremy, 2014). The paper further mentioned that
with a few simple changes to the data set-up and model specification, segmented regression
analysis can easily be implemented in standard statistical software packages. The design is flexible
to estimate the effects of different intervention components by adding multiple ‘interruptions’ to
the time series although this requires a sufficient number of time points between interventions for
independent effects to be estimated. It also allows for phased and lag implementation by fitting a
model with three segments, corresponding to the pre-implementation, implementation, and post-
implementation periods. Although it recommended segmented time series analysis for analysis of
data from an interrupted time series study, several modifications were proposed to the basic
segmented regression analysis approach to deal with challenges arising in the evaluation of
complex time series data. Gebski et al (2012) in paper to evaluate impact of prevention and control
of infection program in health care, a modified step wedge design was used to model effects that
might take weeks or months to become effective and might be implemented in different units at

different times (Gebski, Ellingson, Jern, & Kle, 2012).

Segmented time series regression model has also been used in malaria studies to evaluate impact
of interventions in malaria control. McLean et al (2018) applied the model to assess effect of
integrated community health worker (CHW) programmes in reducing Plasmodium falciparum and
Plasmodium vivax malaria incidence and malaria rapid diagnostic test (mRDT) positivity with
each year of community health worker (CHW) operation (McLean, Alistair, Aung, Zay, & Hla,
2018). Through the model it was established that communities with CHWs providing malaria
diagnosis and treatment experienced declines in P. falciparum and P. vivax malaria incidence of
70% (95% CI 66—-73%) and 64% (59-68%) respectively each year of operation (McLean, Alistair,
Aung, Zay, & Hla, 2018).

Faranak et al..,2003 also applied interrupted time series regression to evaluate an intervention to
reduce inappropriate use of key antibiotics in the UK. The intervention was a policy for
appropriate use of Alert Antibiotics (carbapenems, glycopeptides, amphotericin, ciprofloxacin,
linezolid, piperacillin—tazobactam and third-generation cephalosporins) implemented through

concurrent, patient-specific feedback by clinical pharmacists. The model captured increased use
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of Alert Antibiotics before the intervention started but decreased steadily for 2 years thereafter

(Faranak, Kirsteen, Dilip, Gabby, & Simon, 2003).

The main focus of this chapter was to assess the impact of indoor residue spray (IRS) malaria
intervention, taking into consideration the influence of lagged and non-linear effects of climate
factors. Multiple nested models were constructed and compared using AIC and residue deviance
as evaluation metrics. The study specifically examined the delayed effects of climate and its
implications on parameter estimation regarding the impact of the intervention. Moreover, the
selected model was applied to estimate the effectiveness of indoor residue spray (IRS) and to
forecast potential future epidemics, considering past climate experiences and the implementation

of the intervention.
3.3. Malaria control in Mangochi

Indoor residual spraying (IRS) is one of the primary vector control interventions for reducing and
interrupting malaria transmission (Government of Malawi, 2020). The WHO Global Strategy for
Malaria (2016-2030) also recommends that all people living in high Malaria burden areas be
protected through the provision, use and timely replacement of long-lasting insecticide treated nets
(LLINSs), and where appropriate application of indoor residue spray (IRS) (WHO, 2016). In line
with this and the 2017-2022 revised Malawi Malaria Strategic Plan, IRS has been prioritized as
high impact vector control intervention in high malaria burden districts of Mangochi, Balaka and
Nkhata bay (Government of Malawi, 2020). Furthermore, there is entomological evidence that the
vectors predominant in these districts are A. funestus which exhibit endophagic and endophilic

behaviors making indoor residue spray (IRS) intervention suitable (Government of Malawi, 2020).

The national malaria control program conducted indoor residue spraying (IRS) in Mangochi
district starting in November 2019. Other malaria control interventions implemented in the district
recently include mass net distribution conducted in year 2016, routine net distribution targeting

new born babies and pregnant women and larva source management promoted at community level.

3.4. Methods and Materials

3.4.1. Segmented Time Series Regression model

This study utilized a segmented time series regression analysis to assess the effectiveness of the

indoor residue spray (IRS) malaria intervention, which was initiated in November 2019 in
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Mangochi district. The segmented time series approach allowed for the evaluation of the
intervention's impact on malaria incidence and the detection of any notable changes in the malaria

trends after the intervention implementation.
The model frame is expressed as follows. Let ¥; be monthly malaria cases, then
Yi~NegBinomial(u;)

2mt
log(u; ) = a + By * Time in months + B, * Intervention + Bs * sin (T)

2mt
+ B, * cos (T) + Z B = Climate variables
t

Equation 25

In the model above, Y; is number of malaria cases, p; is expected monthly malaria cases,
log(u;) is log-link function, « is baseline intercept, B; is a coefficient representing a baseline
trend, B, is coefficient representing the effect of intervention, Bzand B, are coefficients for sine
and cosine functions to control for malaria seasonality. As evident from the findings of this study,
it was observed that climate factors, including rainfall, temperature, and humidity, exhibited
delayed effects on malaria incidence. Therefore, delayed climate variables were included in the

model represented by }; B .

In time series data, seasonality is a common issue where outcomes in one month tend to be more
similar to those in neighboring months within the same time of year, leading to autocorrelation
(Bernal, Cummins, & Gasparrini, 2016). In this study seasonality was controlled using sine-
cosine Fourier functions. To address the issue of over-dispersion in the data, the negative binomial

regression model was employed in this study.

3.5. Results

3.5.1. Model building

The study examined nested models that included various components such as the baseline trend,
seasonal control by applying sine and cosine functions, intervention effect (indoor residue spray

or IRS), and climate variables (lagged and non-lagged).
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The nested models used in this study are as follows:

Model-0: This model includes only the intercept term, serving as a baseline reference for

comparison, equation 26.

Model-1: In addition to the intercept, this model includes a baseline trend over time, allowing for

the analysis of temporal patterns in malaria incidence, equation 27.

Model-2: Along with the intercept and baseline trend, this model incorporates seasonality control
by applying sine and cosine functions, capturing the cyclic nature of malaria incidence, equation

28.

Model-3: Building upon the previous models, this model introduces an intervention variable to
evaluate the impact of indoor residue spray (IRS) while controlling for the baseline trend and

seasonality, equation 29.

Model-4: In addition to the intercept, baseline trend, seasonality, and intervention variable, this
model incorporates climate variables that are known to influence malaria. It assesses the direct

association between these climate factors and malaria incidence, equation 30.

Model-5: Extending Model-4, this model includes lagged effects of climate variables. The
selection of lagged terms is based on the findings from Chapter 2, indicating that the lagged effects
peak at lag-0 and remain significant up to lag-3, diminishing thereafter. Thus, all climate variables
in Model-5 have lags up to lag-2, representing the influence of previous climate experiences over

the past two months, equation 31.

By comparing these nested models, the study aimed to determine the most influential factors and
their effects on malaria incidence, providing valuable insights into the dynamics of malaria

transmission and the impact of interventions and climate variables.

Mode-0: log(u;) = a

Equation 26

Mode-1: lo g(u; ) = a + By * Time in months

Equation 27
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Mode-2: lo g(u; ) = a + B; * Time in months + B, * sin ( ) + B; * cos ( Zt)
Equation 28
Model-3: lo g(4; ) = a + By * Time in month + B, * sm( ) + B3 * cos( ) + By *

Intervention

Equation 29
Model-4: lo g(u; ) = a + B; * Time in month + B, *sm( )+33 *cos( )+ B, *
Intervention + ), tB5 * climate variables

Equation 30
Model-5: lo g(u; ) = a + B, * Time in month + B, * sm( )+B3 *cos( )+ B, *
Intervention + ). tB5 * lagged climate variables

Equation 31

3.5.2. Model selection

Model selection was based on AIC from the all six models. As indicated in Table 4, model-5 has
smallest AIC among all candidate models. This model has baseline trend, seasonality control (sine-

cosine functions), intervention (IRS) and lagged climate variables.
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Table 4 Comparison of AIC , BIC and QIC for candidate models

Model-ID Model description AIC BIC QIC

Model 0 Intercept only 1417.165 1423.824 177540.5
Model 1 Intercept and trend 1419.314 1428.192 183929.6
Model 2 Intercept, trend and seasonality 1399.986 1413.303 139525.5

Intercept, trend, seasonality and
Model 3 intervention 1379.029 1394.565 98395.56
Intercept, trend, seasonality,
intervention and non-lagged climate
Model 4 variables 1385.953 1408.148 110041.4
Model 5 Intercept, trend, seasonality, 1373.802 1409.314 92346.27
intervention and lagged climate

variables

Examination of model residuals through ACF plots in Figure 8 also indicates pictorial diminishing
of autocorrelation associated with incorporation of lagged climate variables in model-5. These
finding indicate the importance of incorporating delayed effects of climate when modelling malaria

incidence.
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(a) Model-0

Series residuals(dynmodelAllAgesO0)

(b) Model-1

Series residuals(dynmodelAllAges0)
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Figure 8 ACF plots of model residues
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3.5.3. Model coefficients

The model coefficients for Model 5 are displayed in Table 5, and confidence intervals were
examined to assess the significance of these coefficients by checking if they contain a zero effect.
While the coefficients for rainfall did not show statistical significance, the study considered its
known impact on vector breeding and disease transmission. The coefficients for humidity at lag-1
and lag-2 exhibited statistically significant positive associations with malaria incidence,
suggesting that higher humidity levels in previous time periods may increase the likelihood of
malaria. Similarly, the coefficients for maximum temperature at lag-1 was statistically significant,
indicating that higher temperature levels in the previous month may also contribute to an increased
likelihood of malaria. These findings align with results observed when investigating the
relationships between these climate factors and disease transmission dynamics in the previous

chapter.

Table 5 Model coefficients for lagged climate variable model

Coefficients: Estimate Std.Error Cl(lower) Cl(upper)

(Intercept) 2.58 2.093205 -1.527316 6.67789
beta 1 0.0377 0.028519 -0.018176 0.09361
sine -0.442 0.219964 -0.872681 -0.01044
cosine 0.196 0.156435 -0.11074 0.50247
Trend 0.00455 0.002494 -0.000339 0.00944
Intervention -0.647 0.106034 -0.854488 -0.43884
Rainfall lag-0 -0.0000358 0.000589 -0.001191 0.00112
Rainfall lag-1 -0.000177 0.000606 -0.001365 0.00101
Rainfall lag-2 0.000123 0.000582 -0.001018 0.00126
Humidity lag-0 0.00432 0.007054 -0.009506 0.01815
Humidity lag-1 0.0322 0.007399 0.017663 0.04667
Humidity lag-2 0.0178 0.00716 0.003771 0.03184
Maximum temp lag-0 0.0069 0.026026 -0.04411 0.05791
Maximum temp lag-1 0.0718 0.027937 0.017085 0.1266
Maximum temp lag-2 0.0377 0.027803 -0.016798 0.09219
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3.5.4. Impact of lagged climate effect in modeling

The impact of indoor residue spray (IRS) intervention on malaria incidence was assessed using
different candidate models, and the results are presented in Table 6. All models demonstrated a
reduction in malaria incidence associated with IRS intervention. However, the magnitude of the
impact varied across the different models. Notably, when climate variables were incorporated in
models 4 and 5, the estimated impact changed from 48.7% to 46.93% and 47.62%, respectively.
These findings highlight the importance of considering climate factors when modeling malaria

incidence, as omitting them can potentially influence estimates of the true impact of interventions.

Table 6 Model parameters (exponentiated)

Model Intercept Trend Intervention AIC Estimated % reduction of cases
Model 3 2078.18604 1.007421 0.512739  1379.029 48.73%
Model 4 7.383166  0.006607004 0.5306841  1385.953 46.93%
Model 5 13.135119 1.0045596 0.5237897  1373.802 47.62%

3.5.,5. Impact of indoor residue spray (IRS) malaria intervention in Mangochi

The study utilized model-5 to evaluate the impact of IRS on malaria cases, considering the delayed
effects of climate factors. The findings revealed a significant reduction of malaria cases by 48%
(CIL: 46%-49%) in the general population due to IRS intervention. However, when analyzing the
data based on different age groups and accounting for lagged effects of climate factors, varying
impacts were observed, as presented in Table 7. Notably, the under-5 age category exhibited a
substantial reduction in malaria cases, with IRS resulting in a 51% decrease (CI: 49%-54%), while

the over-5 category experienced a lower reduction of 44% (CI: 43%-47%).
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Table 7 Model estimates for impact by age category

95% CI
Age group Estimated % reduction of cases Lower Upper
All population 48% 46% 49%
Under - 5 51% 49% 54%
Over-5 44% 43% 47%

The graphs in Figure 9 below shows long time trends that hypothesize expected scenario under
which an intervention had not taken place and the trend continues unchanged (‘expected’ trend, in
the absence of the intervention, given the pre-existing trend) which is referred to as the
‘counterfactual’. The counter factual is obtained by removing intervention effect so that the
historical trend is allowed to continue without interruption beyond in the post intervention period

as shown below.

Model Predicted
exp(ByxIntervention)

Counter factual =

Equation 31

In all age groups the counter factual trend depicts high malaria cases compared to what is observed

and predicted by the model as shown in Figure 9a-c.
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for climate factors

3.6. Discussion

The findings of this study align with the existing literature on the effectiveness of interrupted time
series (ITS) designs to evaluate the effectiveness of interventions in real-world settings where
randomized controlled trials (RCTs) may not be feasible or practical (Evangelos et al., 2015). The
study further showed that incorporating lagged climate effects in ITS models improved the
accuracy of modelling impact of IRS interventions. The study also demonstrated that lagged
climate conditions can significantly impact disease transmission dynamics and, therefore, should

be accounted for when evaluating impact of an intervention such as IRS.
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Generally, the study indicates a significant reduction in malaria cases associated with IRS
intervention. Furthermore, it has been demonstrated that the delayed effects of climate conditions
significantly influenced malaria incidence during specific periods. Therefore, when evaluating the
impact of interventions, it is crucial to thoroughly consider and account for the influence of lagged
climate conditions. After accounting for lagged climate conditions, the study revealed a notable
reduction in malaria incidence by 48% (CIL: 46%-49%) associated with the implementation of
Indoor Residue Spray (IRS) in the general population. However, when analyzing the data based
on different age groups, the study found varying impacts. The under-5 age category exhibited a
significant reduction in malaria cases (51%, CI: 49%-54%), whereas the over-5 category
experienced a comparatively lower reduction (44%, CI: 43%-47%). The finding is important
considering previous research that has highlighted the vulnerability of young children to severe
malaria and the potential benefits of targeted interventions for this age group such as a study by
Kazembe et al. (2015). The study by McLean et al. (2018) also reported differential impacts of
community health worker (CHW) programs on malaria incidence among different population

groups.

The analysis also revealed a distinct counterfactual trend, demonstrating a higher incidence of
malaria cases compared to what was observed and predicted by the model. The substantial
reduction of 48% (CI: 46%-49%) associated with the implementation of Indoor Residue Spray

(IRS) supports the efficacy of this intervention strategy in combating malaria.
3.7. Limitations and recommendations

The analysis in this study did not account for socio-economic factors and other potential
confounders, such as local mosquito control programs, which can also influence malaria
transmission. Unfortunately, these data were not available for inclusion in the analysis.
Furthermore, it should be noted that a time-varying population offset was not used because
TScount R package did not support the implementation of a variable offset at the time of this study.
However, it is important to mention that the influence of population changes over the monthly time
period is expected to be minimal in this study, as there were negligible population variations

observed between the months.
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3.8. Conclusion

In conclusion, the study highlights the significant impact of IRS intervention on reducing malaria
incidence in Malawi. The inclusion of climate variables and accounting for lagged effects
enhanced the accuracy of the predictions and provided a comprehensive understanding of the
intervention's effects. The findings support the continued implementation and scale-up of IRS as
a population-level intervention for malaria prevention and control, particularly in areas with high
malaria burden. Furthermore, the differential impact observed among age groups emphasizes the
importance of targeting interventions to specific populations, such as young children who are at
higher risk of malaria. These findings contribute to the designing effective malaria control

programs that consider both intervention strategies and environmental factors.
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CHAPTER 4

CONCLUSION
Overall, the findings of this study contribute to the growing body of literature on the relationship
between climatic factors and malaria incidence. The study confirms the presence of a nonlinear
relationship between rainfall, humidity, maximum temperature, and the risk of malaria, consistent
with previous research. These findings align with studies that emphasize the role of climate

variables in the transmission dynamics of malaria.

The study highlights the significance of rainfall in creating breeding grounds for mosquito vectors
and increasing the prevalence of malaria cases. This finding is supported by previous research,
indicating that higher rainfall is associated with a higher risk of malaria. The study also underscores
the impact of humidity on mosquito populations and subsequent malaria transmission, in line with
previous studies highlighting the positive association between humidity and malaria risk.
Similarly, the study demonstrates the importance of temperature in shaping the dynamics of

malaria transmission, particularly in relation to mosquito larval development and survival.

The study incorporated lagged effects, considering that the impact of climatic variables persists
over multiple time intervals. The findings align with previous research emphasizing the sensitivity
of malaria and other diseases to weather and climate conditions. The study's narrow confidence
intervals provide a higher level of certainty in the association between climatic factors and malaria

incidence, further supporting the robustness of the findings.

However, the study has limitations. It focused on a specific geographical region, limiting the
generalizability of the results. The use of long monthly lags may affect the accuracy of the analysis,
and future research could explore the effect of shorter lags to capture more immediate associations.
The study did not account for important socio-economic factors and potential confounders, such
as local mosquito control programs, which can influence malaria transmission. Incorporating these
variables in future research would provide a more comprehensive understanding of the complex

interplay between climate, socio-economic factors, and malaria transmission dynamics.
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In conclusion, the study contributes to the understanding of the nonlinear relationship between
climatic factors and malaria incidence. The findings have implications for malaria control and
prevention strategies, emphasizing the importance of climate monitoring and forecasting in
targeted interventions. By considering the impact of climatic factors, public health authorities can
develop proactive measures to mitigate the spread of malaria, particularly in regions prone to
extreme weather events. Continued research in this field will further enhance efforts to reduce the
burden of malaria by unraveling the complex interactions between climate and malaria

transmission dynamics
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This manuscript presents a study that aimed to analyze the relationship between
climate factors and malaria incidence. The research utilized monthly malaria
incidence data from the national malaria control program and climate data from
the Department of Meteorological Services and Climate Change in Mangochi
district, Malawi. The analysis employed a distributed lag non-linear model to
examine the nature of the relationship between climate variables and malaria
incidence. The results revealed an immediate peak in malaria risk in the same
month following extreme weather conditions, highlighting the importance of
short-term effects. In this study, the risk of malaria immediately doubles with
extreme rains and humidity compared to risk at average climate conditions. The
effects continued for up to two months but gradually subsided thereafter. These
findings underscore the significance of considering previous climate conditions
in predicting current and future malaria incidence. The study emphasizes the
importance of understanding the relationship between climate and malaria
incidence for informing targeted interventions, establishing malaria early
warning systems, and mitigating the effects of climate change on malaria
transmission. Incorporating the knowledge gained from this research into
malaria programming and control efforts can enhance the effectiveness of
interventions and contribute to proactive strategies for reducing the burden of
malaria in the context of a changing climate.

1. Introduction

Malaria transmission is influenced by natural
risk factors such as rainfall patterns,
temperature, and humidity, which affect the
spread of the malaria parasite (Ayansina,
Isioma, Consolato, & Oluwatoyin, 2020).
Increased rainfall leads to the proliferation of
mosquito breeding sites, thereby increasing
the transmission of malaria parasites among
individuals. Similarly, temperature and
humidity impact malaria transmission by
regulating the rate of mosquito larvae

development and mosquito survival rates
(Gunda, Chimbar, Shamu, Sartorius, &
Mukaratin, 2017). Studies, such as the one
conducted by Gunda et al. (2017) in rural
Gwanda, Zimbabwe, have established the
link between climate variability and vector-
borne diseases like malaria. Climate
variability has the potential to either facilitate
or hinder efforts to control the disease
(Gunda, Chimbar, Shamu, Sartorius, &
Mukaratin, 2017).
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Understanding the variation in malaria
incidence due to climate variability, both
present and recent past, is crucial for planning
future malaria control programs (Gunda,
Chimbar, Shamu, Sartorius, & Mukaratin,
2017). It enables the identification of optimal
timing for implementing malaria
interventions, taking into account the impact
of previous climate conditions. This
understanding serves as a valuable tool for
program implementers, allowing them to
incorporate past climate experiences into
decision-making processes and enhance the
effectiveness of malaria control initiatives.
Furthermore, understanding the relationship
between malaria incidence and lagged
climatic conditions contributes to the
development of robust malaria early warning
systems.

Examining the influence of past climate
experiences on malaria transmission is also
vital for understanding local epidemiological
shifts, some of which can be attributed to
climate change. Future climate projections
indicate a general warming trend, particularly
in southern Malawi and over the lake
(Vincent & Katharine, 2020). However,
different climate models provide varying
predictions regarding rainfall patterns.

These changing climatic conditions highlight
the importance of considering the complex
interactions between climate factors and
malaria  transmission  dynamics.  The
understanding of local climate patterns and
its potential impact to malaria is crucial for
developing effective strategies to mitigate the
disease and adapt to future climate
challenges.

Previous studies however commonly
overlook the existence of lagged and non-
linear  relationship  between  climate

conditions and malaria incidence. This study
utilized methods that capture lagged and non-
linear relationships more accurately. By
applying appropriate methodologies to
account for delayed climate effects, this study
provides a more comprehensive and accurate
analysis of the influence of climate on
malaria transmission in the Mangochi
district.

2. Distributed lag non-linear model

The distributed lag non-linear model
(DLNM) is a methodology used to model the
non-linear and delayed effects of
environmental stressors or events. It
incorporates a combination of past exposures
over several time lags to explain the impact
of the stressors at a given time. The DLNM is
based on a bi-dimensional space of functions
called "cross-basis" that describes the shape
of the relationship along the predictor (e.g.,
temperature) and its lag dimension.

Equation 1: Distributed Lag Model (DLM)

V¢ = & + Boxq + Bix¢_1+.. B x_tu

In the DLM, y, represents the response
variable at time t, x is the regressor, and
B represents the weight of the respective lag
L. The coefficients B, can be interpreted as
the effect of the past exposure on the present
moment response or the effect of the current
exposure on the future response.

Equation 2: Dependency on Exposure
History

L
S(X, t) = .fL Xt_IW(L) dL

0

Equation 2 describes the dependency of the
response on exposure history. S(x,t)
represents the exposure-response
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relationship at time t, X;_; is the lagged
exposure, and w(L) is the weighting basis
function applied to constrain the lag
coefficients. The integral sums up the effect
of exposures over different time lags.

Equation 3: Cross-Basis Function in DLNM

S(xyn) = qrn = wen

In the DLNM, the cross-basis function
represents the non-linear relationship
between the predictor variable x and the
response variable y over time. The function
S(Xy, n) is a linear combination of the basis
functions f(x) and w(l), which describe the
exposure-response structure along x and the
lag-response structure along 1, respectively.

Equation 4: DLNM Equation

J k
glu) = a+ Z si(xxj5 1) + Z YiZik
j:l k=1

The DLNM equation incorporates the cross-
basis function s;, which denotes smoothed
relationships between the predictor variables
Xyj and the linear predictor. The model
assumes that the response variable Y follows
a distribution from the exponential family.
Other predictor variables Zy, with linear
effects are also included, and the parameters
a, nj, and yy are estimated.

These equations capture the key concepts and
relationships within the distributed lag non-
linear model methodology. They provide a
basis for understanding the modeling
approach and how it incorporates the non-
linear and delayed effects of environmental
stressors.

3. Application: analysis of results

A distributed lag non-linear model (DLNM)
was applied to analyze the relationship
between climate factors and malaria
incidence in Mangochi district. The model
used monthly malaria cases as the dependent
variable and climate variables, such as
temperature, rainfall, and relative humidity,
as the independent variables.

The equation used in the DLNM was:

Yi~NegBinomial(u;)

J
log(u) = a+ ) S;(xe;B) +
j=1

k=1 Vi (Zye) + s(time, p) +
log(population)

e The dependent variable, u,,
represents the expected malaria cases
on monthly basis.

e The independent variables are the
climate factors, including monthly
temperature, monthly rainfall, and
monthly relative humidity.

e NegBinomial is the negative binomial
distribution used to account for
overdispersion in the data.

e ais the intercept term.

e 5 (xt, j» Bj) captures the non-linear
effects of climate factors at different
lag months.

e ;. (z:) represents the linear effects
of other predictors, such as the IRS
intervention.

o Si(x.;,B)) is a natural cubic spline
used to control for seasonality in the
malaria time series.

e log(population) is the offset term that
adjusts for changes in population size
over time.
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By applying this model and estimating the
parameters, the researchers aimed to
understand the relationship between climate
factors and malaria incidence in Mangochi
district, considering the non-linear effects,
delayed effects, and potential confounding
factors.

3.1.Distributed Lag Non-Linear Model
building

The correlation between climate variables
was assed using Pearson correlation to
identify climate variables that exhibit
excessive  collinearity. The correlation
matrix, as shown in Table 2, revealed positive
correlations among the climate variables.
Specifically, the maximum and minimum
temperatures  exhibited a  correlation
coefficient of 0.81, indicating a strong
positive relationship. Similarly, there was a
positive correlation between the minimum
temperature and rainfall, with a correlation
coefficient of 0.54. Furthermore, the
humidity and rainfall variables showed a
positive correlation, with a correlation
coefficient of 0.51.

These findings suggested some degree of
collinearity among climate variables which
pose challenges in the statistical analysis as it
can lead to multicollinearity.

Table 2 Correlation matrix of climate
variables

Climate Malaria Max Min
variables Total Rain Humidity  Tem Tem
Malaria

Total 1.00 0.112 0.567 -0.284  -0.078
Rain 0.112 1.00 0.512 0.133 0.536
Humidity 0.567 0.512 1.00 -0.377  0.122
Maximum

Temp -0.284 0.132  -0.377 1.00 0.813
Minimum

Temp -0.078 0.537  0.122 0.811 1.00

In order to assess the impact of collinearity in
the final model, the Variance Inflation Factor

(VIF) was applied. The VIF is a statistical
index that quantifies the extent to which the
variance of the estimated regression
coefficients is increased due to collinearity
among the independent variables. The
researcher followed the recommendation by
Qingin et al. (2018), who suggested
removing variables with a VIF above 5 to
minimize the impact of collinearity on model
sensitivity. Following VIF analysis, variables
with high VIF were dropped and the resultant
model had reduced variance inflation factor
among all climate variables.

3.2. Exposure Lag Response relationship
In the model selection process, a variety of
linear and non-linear functions in the
exposure-lag  dimensions for climate
variables were considered. A total of 18
different model candidates were evaluated,
each with different specifications in the
exposure-lag dimensions.

To determine the most appropriate model
specifications, the Akaike Information
Criterion (AIC) was used. The AIC provides
a measure of the model's goodness of fit
while considering its complexity. By
comparing the AIC values across different
functions in the exposure-lag dimensions for
climate variables, the researchers identified
the model specifications that yielded lower
AIC values.

The examination of AIC revealed that using
natural cubic splines with knots placed at
equal intervals in the exposure dimension and
a polynomial in the lag response dimension
resulted in the lowest AIC values.

Backward variable selection was then
performed to further refine the model. This
process involved generating basis variables
based on the selected model specifications
and incorporating them into the final model.
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The backward variable selection method
demonstrated improvement in the model
when including these climate basis variables.

To control for seasonality, natural cubic
splines were employed. Additionally, the
model included the predictor of Indoor
Residual Spraying (IRS) intervention period.

3.3.Lagged effects of rainfall

Figure 5a illustrates a nonlinear relationship
between precipitation and malaria incidence.
The study found that increasing precipitation
compared to its average is associated with a
higher risk of malaria, reaching its peak at lag
0 when monthly rainfall reaches a maximum
of 541mm. The relative risk (RR) at this point
1s 2.4314162, with a 95% confidence interval
(CI) of (2.0554548, 2.8761443).

The predicted effects of rainfall on malaria
incidence remain consistent across all three
lag periods and exhibit a narrow confidence
interval, as depicted in Figure 5d. Figure 5b
which shows a heat map, representing
relative risk, visually shows a high risk
associated with increasing rainfall, peaking at
lag-0 (bright red). Additionally, the study
identified delayed but diminishing effects of
climate conditions from 0-3 months lag,
indicating that the impact of climatic
variables persists over multiple time
intervals.
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Figure 5 3D relationship, relative risk and
lag specific effects between malaria cases
and rainfall

3.4.Lagged effects of humidity

Figure 6a depicts a nonlinear relationship
between humidity and malaria incidence. The
study revealed that increasing humidity
compared to its average is associated with a
higher relative risk, peaking at lag 0 when
relative humidity reaches a maximum of 84.
At this point, the relative risk (RR) is
2.0537649, with a 95% confidence interval
(CI) of (1.9435101, 2.1702744).

The effects of humidity on malaria incidence
exhibit a narrow confidence interval and are
sustained up to lag-2, as shown in Figure 6d.
Figure 6b which shows risk heat map,
representing relative risk, visually illustrates
a high risk associated with increasing
humidity, similarly reaching its peak at lag-0.
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Figure 6 3D reZdtionship, relative risk and
lag specific effects between malaria cases
and humidity

3.5.Lagged effects of temperature

Figure 7a depicts a nonlinear exposure lag
response relationship between maximum
temperature and malaria cases. The analysis
revealed that increasing temperature
compared to its average is associated with an
elevated risk of malaria, with the risk peaking
at lag 0 when the temperature reaches a
maximum of 34 degrees Celsius. At this
point, the relative risk (RR) is 1.3907299,
with a 95% confidence interval (CI) of
(1.3523290, 1.4302212).

The effects of temperature on malaria cases
are sustained up to lag 2, as shown in Figure
7d, and the predicted effects exhibit narrow
confidence intervals across all lags. Figure 7b
which shows risk heat map, representing
relative risk, visually indicates a high risk
associated with increasing maximum
temperature, reaching its peak at lag-0.
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Figure 7 3D relationship, relative risk and
lag specific effects between malaria cases
and maximum temperature

4. Discussion and Conclusion

The findings in this study are consistent with
previous reports such as Gunda et al. (2017),
which demonstrated a significant association
between malaria incidence and precipitation
at specific lag periods. Similar to the current
study, Gunda et al. found that precipitation (at
1- and 3-month lags) and mean temperature
(at 1- and 2-month lags) were significantly
associated with malaria incidence at specific
lag periods. The distributed lag non-linear
model (DLNM) analysis in this study also
suggests present high-risk period based on
past  3-months  rainfall  conditions.
Specifically, the results in this study highlight
a peak in malaria risk which doubled
immediately following extreme rainfall
conditions, aligning with Florence et al.'s
(2019) report linking climate extreme events
with malaria outbreaks. The effect of rainfall
continued to be sustained for a period of 3
months and diminishes beyond 3 months.

This study, in conjunction with previous
research, provide evidence that changes in
rainfall pattern could contribute to the
creation of conditions conducive to vector
breeding, which could explain the observed
shifts in malaria epidemiology in certain

72 |Page



areas of Malawi. A study by Yoonhee et al.
(2019) reported that global and local climate
change can alter the spatial and temporal
distribution  of  malaria,  increasing
opportunities for transmission in traditionally
non-malarious areas.

The impact of humidity on malaria incidence
has also been extensively studied, and the
findings of this study reaffirm the positive
association between humidity and malaria
risk. The observed peak in malaria risk which
doubles immediately following highest
recorded relative humidity, supports the
understanding that humidity plays a crucial
role in influencing mosquito populations and
subsequent malaria transmission. This result
aligns with Philippe et al.'s (1995) report,
which states that higher humidity levels
prolong the lifespan of mosquitoes, enabling
them to infect more individuals.

Similarly, the nonlinear relationship between
temperature and malaria cases is consistent
with previous research that has established a
connection between the disease and
temperature conditions. The observed peak in
malaria risk following high temperatures
emphasizes the importance of temperature in
shaping the dynamics of malaria
transmission. As reported by Gunda et al.
(2017),  temperature  affects  malaria
transmission by regulating the rate of
development of mosquito larvae, which in
turn influences mosquito survival rates. Thus,
considering temperature as a crucial factor in
understanding and addressing malaria
transmission dynamics is essential.

In conclusion, the findings of this study
contribute to the growing body of literature
on the relationship between climatic factors
and malaria incidence. The results
demonstrate a delayed and nonlinear

relationship between climate conditions and
the risk of malaria, consistent with previous
research. The study found that precipitation
and mean temperature at specific lag periods
were significantly associated with malaria
incidence. There was a peak in malaria risk
following extreme weather conditions,
highlighting the importance of short-term
effects. The positive association between
increasing rainfall and malaria risk confirms
the influence of precipitation on mosquito
breeding and the prevalence of malaria cases.
Humidity was also found to be positively
associated with malaria risk, influencing
mosquito  populations.  Similarly, high
temperatures were associated with an
increased risk of malaria. The observed
delayed effects of climate factors underscore
the significance of climate conditions in
malaria  distribution and transmission.
Overall, these findings enhance our
understanding of the impact of climatic
variables on malaria epidemiology.
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Article
Info Abstract
This objective focused on the evaluation of the impact of Indoor Residue Spray
Publishable (IRS) intervention on malaria incidence in Mangochi district, Malawi, using a
academic segmented time series regression. The study incorporated lagged climate
manuscript conditions to improve the modeling and evaluation of IRS intervention. The
"Keywords  analysis revealed a significant reduction in malaria cases associated with the

implementation of IRS, with a notable overall decrease of 48% (CI: 46%-49%)
IRS in the general population. Different age groups exhibited varying impacts, with

Segmented the under-5 age category experiencing a significant reduction of 51% (CI: 49%-
time series 54%). These findings supported the efficacy of IRS as a malaria prevention
regression strategy and highlighted the importance of considering lagged climate

conditions in the evaluation of interventions. The study contributed to the
literature on interrupted time series designs and their application in evaluating
population-level health interventions.

4. Introduction

This study aimed to evaluate the impact of
Indoor Residue Spray (IRS) intervention on
malaria incidence in Mangochi district,
Malawi, using a segmented time series
regression analysis. An interrupted time
series (ITS) was employed as an alternative
to randomized controlled trials (RCTs) in
assessing the effectiveness of interventions in
real-world settings. This approach was
particularly useful for population-level
interventions such as IRS, where RCTs were
impractical and costly in resource-
constrained settings. These designs allowed
for the analysis of observational data in the
absence of full randomization or a case-
control design.

Segmented time series regression analysis
was particularly well-suited for evaluating
interventions ~ with  clearly = defined

implementation periods. By distinguishing
the effects of interventions from secular
trends, this approach provided a robust
framework for assessing the impact of IRS
interventions on malaria incidence. Previous
studies, such as Monica et al. (2014) and
Gebski et al. (2012), had demonstrated the
effectiveness of segmented regression
analysis in various healthcare settings.

In the context of malaria control, segmented
time series regression had been used to
evaluate the effects of interventions, such as
community  health  worker programs
(McLean et al., 2018). These studies had
shown promising results in reducing malaria
incidence and had highlighted the potential of
this analytical approach.

The study aimed at assessing the impact of
IRS intervention on malaria incidence in
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Mangochi district, Malawi. Furthermore, the
study incorporated lagged and non-linear
climate effects in the analysis to account for
the influence of climate conditions on disease
transmission  dynamics. By applying
segmented time series regression, the study
estimated the causal effects of the IRS
intervention and provide an opportunity to
forecast potential future epidemics based on
past climate experiences and the
implementation of the intervention.

5. Application: analysis of results

This study utilized a segmented time series
regression analysis to assess the effectiveness
of the indoor residue spray (IRS) malaria
intervention, which was initiated in
November 2019 in Mangochi district. The
segmented time series approach allowed for
the evaluation of the intervention's impact on
malaria incidence and the detection of any
notable changes in the malaria trends after the
intervention implementation.

The model frame is expressed as follows. Let
Y; be monthly malaria cases, then

Yi~NegBinomial(u,)

log(u;) = a + B * Time in months +

B, * Intervention + B3 x sin (g) +

B, * cos (g) + Y.; B * Climate variables
In the model above, Y; is number of malaria
cases, log(u;) is log-link function, a is
baseline intercept, B; 1is a coefficient
representing a baseline trend, B, is
coefficient representing the effect of
intervention, Bszand B, are coefficients for
sine and cosine functions to control for
malaria seasonality. As evident from the
findings of this study, it was observed that
climate factors, including rainfall,
temperature, and humidity, exhibited delayed

effects on malaria incidence. Therefore,
climate variables were included in the model
represented by Y.; B . To address the issue of
over-dispersion in the data, the negative
binomial regression model was employed in
this study.

4.1.Model building

The study examined nested models that
included various components such as the
baseline trend, seasonal control using sine
and cosine functions, intervention (indoor
residue spray or IRS), and climate variables
(lagged and non-lagged).

The nested models used in this study are as
follows:

Model-0: This model includes only the
intercept term, serving as a baseline reference
for comparison, equation 3.2.

Model-1: In addition to the intercept, this
model includes a baseline trend over time,
allowing for the analysis of temporal patterns
in malaria incidence

Model-2: Along with the intercept and
baseline trend, this model incorporates
seasonality control using sine and cosine
waves, capturing the cyclic nature of malaria
incidence

Model-3: Building upon the previous
models, this model introduces an intervention
variable to evaluate the impact of indoor
residue spray (IRS) while controlling for the
baseline trend and seasonality

Model-4: In addition to the intercept,
baseline trend, seasonality, and intervention
variable, this model incorporates climate
variables that are known to influence malaria.
It assesses the direct association between
these climate factors and malaria incidence

75| Page



Model-5: Extending Model-4, this model
includes lagged effects of climate variables.
The selection of lagged terms is based on the
findings from Chapter 3, indicating that the
lagged effects peak at lag-0 and remain
significant up to lag-2, diminishing
thereafter. Thus, all climate variables in
Model-5 have lags up to lag-2, representing
the influence of previous climate experiences
over the past two months.

By comparing these nested models, the study
aimed to determine the most influential
factors and their effects on malaria incidence,
providing valuable insights into the dynamics
of malaria transmission and the impact of
interventions and climate variables.

Model selection was based on comparing the
AIC from the all six models. The results
showed that model-5 has smallest AIC
among all candidate models. This model has
baseline trend, seasonality control (sine-
cosine functions), intervention (IRS) and
lagged climate variables.

4.2 Impact of lagged climate effect in
modeling
The impact of indoor residue spray (IRS)
intervention on malaria incidence was
assessed using different candidate models,
and the results are presented in Table 6. All
models demonstrated a reduction in malaria
incidence associated with IRS intervention.
However, the magnitude of the impact varied
across the different models. Notably, when
climate variables were incorporated in
models 4 and 5, the estimated impact
changed from 48.7% to 46.93% and 47.62%,
respectively.

Table 6 Model parameters (exponentiated)

Model Intercept Trend  Intervention AIC  Estimated % reduction of cases
Model 3 2078.18604 1007421 0512739 1379.029 48.73%
Model 4~ 7.383166  0.006607004 05306841  1385.953 46.93%
Model 5 13135119 1.0045596 05237897 1373.802 47.62%

5. Impact of indoor residue spray (IRS)
malaria intervention in Mangochi

The study finally utilized model-5 to evaluate
the impact of IRS on malaria cases,
considering the delayed effects of climate
factors. The findings revealed a significant
reduction of malaria cases by 48% (CI: 46%-
49%) in the general population due to IRS
intervention. However, when analyzing the
data based on different age groups and
accounting for lagged effects of climate
factors, varying impacts were observed, as
presented in Table 7. Notably, the under-5 age
category exhibited a substantial reduction in
malaria cases, with IRS resulting in a 51%
decrease (CI: 49%-54%), while the over-5
category experienced a lower reduction of
44% (CI: 47%-43%).

Table 7 Model estimates for impact by age
category

95% ClI
Age group Estimated % reduction of cases Lower Upper
All population 48% 46% 49%
Under -5 51% 49% 54%
Over-5 4% 43% 47%

The graphs in figure 9 below shows long time
trends that hypothesize expected scenario
under which an intervention had not taken
place and the trend continues unchanged
(‘expected’ trend, in the absence of the
intervention, given the pre-existing trend)
which is referred to as the ‘counterfactual’. In
all age groups the counter factual trend
depicts high malaria cases compared to what
is observed and predicted by the model as
shown in figure 9a-c.
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Figure 9 Graph showing predicted monthly
incidence against counterfactual climate un
adjusted for climate factors

6. Discussion and Conclusion

The findings of this study align with the
existing literature on the effectiveness of
interrupted time series (ITS) designs to
evaluate the effectiveness of interventions in
real-world  settings where randomized
controlled trials (RCTs) may not be feasible
or practical (Evangelos et al., 2015). The
study further showed that incorporating
lagged climate effects in ITS models
improved the accuracy of modelling impact
of IRS interventions. The study also
demonstrated that lagged climate conditions
can significantly impact disease transmission
dynamics and, therefore, should be accounted
for when evaluating impact of an intervention
such as IRS.

Generally, the study indicates a significant
reduction in malaria cases associated with
IRS intervention. Furthermore, it has been
demonstrated that the delayed effects of
climate conditions significantly influence
malaria incidence during specific periods.

Therefore, when evaluating the impact of
interventions, it is crucial to thoroughly
consider and account for the influence of
lagged climate conditions. After accounting
for lagged climate conditions, the study
revealed a notable reduction in malaria
incidence by 48% (CI: 46%-49%) associated
with the implementation of Indoor Residue
Spray (IRS) in the general population.
However, when analyzing the data based on
different age groups, the study found varying
impacts. The under-5 age category exhibited
a significant reduction in malaria cases (51%,
CI: 49%-54%), whereas the over-5 category
experienced a comparatively lower reduction
(44%, CIL. 47%-43%). The finding is
important considering previous research that
has highlighted the vulnerability of young
children to severe malaria and the potential
benefits of targeted interventions for this age
group such as a study by Kazembe et al.
(2015). The study by McLean et al. (2018)
also reported differential impacts of
community health worker (CHW) programs
on malaria incidence among different
population groups.

The analysis also revealed a distinct
counterfactual trend, demonstrating a higher
incidence of malaria cases compared to what
was observed and predicted by the model.
The substantial reduction of 48% (CI: 46%-
49%) associated with the implementation of
Indoor Residue Spray (IRS) supports the
efficacy of this intervention strategy in
combating malaria.

In conclusion, the study highlights the
significant impact of IRS intervention on
reducing malaria incidence in Malawi. The
inclusion of climate variables and accounting
for lagged effects enhance the accuracy of the
predictions and provide a comprehensive
understanding of the intervention's effects.
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The findings support the continued
implementation and scale-up of IRS as a
population-level intervention for malaria
prevention and control, particularly in areas
with high malaria burden. Furthermore, the
differential impact observed among age
groups emphasizes the importance of
targeting  interventions  to  specific
populations, such as young children who are
at higher risk of malaria. These findings
contribute to the designing effective malaria
control programs that consider both
intervention strategies and environmental
factors
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RCODE

##LOADING REQUIRED PACKAGES IN R

library(dyn)

library(dlnm)

library(splines)

library(MASS)

library(nlme)

library(mgcv)

library(tscount)

library(car)

## Transforming variables to zoo class

RainFall<-zoo(Mangoch Dataset 2015 2020 U and O5$Rain)
Humidity<-zoo(Mangoch Dataset 2015 2020 U and O5$Humidity)
MinTemperature<-zoo(Mangoch Dataset 2015 2020 U and O5$ Min Tem')
MaxTemperature<-zoo(Mangoch Dataset 2015 2020 U and O5$'Max Tem")
MinTem<-zoo(Mangoch Dataset 2015 2020 U and O5$'Min Tem")
MaxTem<-zoo(Mangoch Dataset 2015 2020 U and O5$ Max Tem')

TotalMalariaCases<-Mangoch_Dataset 2015 2020 U and O5$MalariaTotal

TotalMalariaU5<-zoo(Mangoch Dataset 2015 2020 U and O5$MalariaU5)
TotalMalariaO5<-zoo(Mangoch Dataset 2015 2020 U and O5$MalariaO5)
TotalPopulation<-Mangoch Dataset 2015 2020 U and OS5$Population
Time <-zoo(Mangoch Dataset 2015 2020 U and O5$Time)

Intervention <- zoo(Mangoch Dataset 2015 2020 U and O5$Population)
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##CHAPTER 2

##FIGURE 2

##SEASONAL PATTERN OF CLIMATE VARIABLES AND MALARIA
##Malaria cases and rainfall seasonal pattern##

seasonal AllCases<-plot(Time, TotalMalariaCases,main = " Malaria and Rainfall Seasonal Trends", type =

"I", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Malaria cases")
par(new=TRUE)

plot(Time,RainFall,type = "1", axes = FALSE, bty = "n", xlab ="", ylab ="",col="blue")

axis(side=4)

legend(4, 550, legend=c("Malaria Cases", "Rainfall"),col=c("black", "blue"), lty=1:2, cex=0.8)
##Malaria cases and humidity seasonal pattern##

seasonal AllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Humidity Seasonal Trends", type

="]", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Malaria Cases")
par(new=TRUE)

plot(Time,Humidity,type = "1", axes = FALSE, bty = "n", xlab ="", ylab = "",col="blue")

axis(side=4)

legend(8, 85, legend=c("Malaria Cases", "Humidity"),col=c("black", "blue"), lty=1:2, cex=0.8)
##Malaria cases and maximum temperature seasonal pattern##

seasonal AllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Maximum Temperature Seasonal
Trends", type ="1", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab =

"Malaria Cases")
par(new=TRUE)
plot(Time,MaxTemperature,type = "1", axes = FALSE, bty = "n", xlab ="", ylab = "",col="blue")

axis(side=4)
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legend(2, 37, legend=c("Malaria Cases", "Maximum Temperature"),col=c("black", "blue"), Ity=1:2,
cex=0.8)

##Malaria cases and minimum temperature seasonal pattern##

seasonal AllCases<-plot(Time, TotalMalariaCases,main = "Malaria and Minimum Temperature Seasonal
Trends", type ="1", axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab =

"Malaria Cases")

par(new=TRUE)

plot(Time,MinTemperature,type = "I", axes = FALSE, bty = "n", xlab ="", ylab = "",col="blue")
axis(side=4)

legend(50, 25, legend=c("Malaria Cases", "Minimum temperature"),col=c("black", "blue"), Ilty=1:2,
cex=0.8)

##FIGURE 3
## SCATTTER PLOTS OF CLIMATE VARIABLES AND MALARIA CASES##

scatterRain<-plot(RainFall, TotalMalariaCases, main = "Malaria cases and rainfall", xlab = "Rainfall",

ylab = "Malaria cases", pch = 19, frame = FALSE)
lines(lowess(RainFall, TotalMalariaCases))

scatterHum<-plot(Humidity, TotalMalariaCases, main = "Malaria cases and humidity", xlab =

"Humidity", ylab = "Malaria cases", pch = 19, frame = FALSE)
lines(lowess(Humidity, TotalMalariaCases))

scatterMaxT<-plot(MaxTemperature, TotalMalariaCases, main = "Malaria cases and Maximum

temperature", xlab = "Maximum Temperature", ylab = "Malaria Cases", pch = 19, frame = FALSE)
lines(lowess(MaxTemperature, TotalMalariaCases))

scatterMinT<-plot(MinTemperature, TotalMalariaCases, main = "Malaria cases and Minimum

temparature", xlab = "Minimum Temperature", ylab = "Malaria cases", pch = 19, frame = FALSE)

lines(lowess(MinTemperature, TotalMalariaCases))
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##VARIABLE COLLINEARITY TEST##
##TABLE 2
##Pearson correlation table

cor(Mangoch Dataset 2015 2020 U _and OS5[, c("MalariaTotal","Rain","Humidity","Max Tem","Min
Tem")])

##FIGURE 4
## Generating VIF values for model with collinear climate variables

modelAllModel VIF <- glm.nb(TotalMalariaCases ~ RainFall + Humidity + MinTem + MaxTem +
Intervention ,offset(log2(TotalPopulation)), data=Mangoch Dataset 2015 2020 U and O5)

vif values<-vif(modelAlIModel VIF)

vif values

## Plotting VIF Bar Graph for with collinear climate variables
barplot(vif_values,main="VIF Values", horiz=TRUE,col="steelblue")
abline(v=>5,lwd=3,Ity=2)

## Generating VIF values for model with collinear climate variables

modelAllModel VIFReduced VIF <- glm.nb(TotalMalariaCases ~ RainFall + Humidity + MaxTem +
Intervention, offset(log2(TotalPopulation)), data=Mangoch Dataset 2015 2020 U and O5)

vif valuesReduced<-vif(modelAllModel VIFReduced VIF)

vif valuesReduced

## Plotting VIF Bar Graph for without collinear climate variables

barplot(vif valuesReduced,main="VIF Values", horiz=TRUE,col="steelblue")
##TABLE 4

##EXPONSURE LAG RESPONSE SPECIFICATION IN DLNM AND GENERATING BASIS
VARIABLES#

##Model Specification for rainfall
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##Linear in exposure space and linear in lag space
basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="lin"),arglag=list(fun="1lin"))
summary(basis.Rain)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15) ,offset(log2(TotalPopulation)),
data=Mangoch Dataset 2015 2020 U and O5)

modelAllModel

BIC(modelAllModel)

##Linear in exposure space and Polynomial in lag space

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="1in"),arglag=list(fun="poly",2))
summary(basis.Rain)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and O5)

modelAllModel

BIC(modelAllModel)

##Polynomial in exposure space and Linear in lag space

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="poly",degree=3),arglag=list(fun="1in"))
summary(basis.Rain)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel
BIC(modelAllModel)
##Polynomial in exposure space and Polynomial lag space

basis.Rain <- crossbasis(RainFall, lag=3, argvar =

list(fun="poly",degree=3),arglag=list(fun="poly",degree=2))

summary(basis.Rain)
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modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##Natural Cubic Splines function with knots in Quantiles in exposure soace and Linear in lag space
basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",4),arglag=list(fun="1in"))
summary(basis.Rain)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##Natural Cubic Spline function in exposure space and Polynomial in lag space

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2))
summary(basis.Rain)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

## Model specification for Humidity

##Linear in exposure space and Linear in lag space

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="1in"),arglag=list(fun="1in"))
summary(basis. Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch_Dataset 2015 2020 U _and_O5)

modelAllModel
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BIC(modelAllModel)

##Linear in exposure space and Poly in lag space

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="1in"),arglag=list(fun="poly",2))
summary(basis.Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel
BIC(modelAllModel)

##Poly in exposure space and Linear in lag space

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="poly",degree=3),arglag=list(fun="1in"))

summary(basis.Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel
BIC(modelAllModel)
##Poly in exposure space and Polynomial in lag space

basis.Hum <- crossbasis(Humidity, lag=3, argvar =

list(fun="poly",degree=3),arglag=list(fun="poly",degree=2))
summary(basis. Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch_Dataset 2015 2020 U _and_O5)

modelAllModel
BIC(modelAllModel)
##NS in exposure space and Linear in lag space

—n

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="1in"))
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summary(basis.Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch _Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##Natural Cubic Spline function in exposure space and Polynomial in lag space

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2))
summary(basis.Hum)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Hum + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##Model Specification for Maximum Temperature

##Linear in exposure space and Linear lag space

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="lin"),arglag=list(fun="1in"))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch_Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##Linear in exposure space and Poly in lag space

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="lin"),arglag=list(fun="poly",2))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and O5)
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modelAllModel

BIC(modelAllModel)

##Poly in exposure space and Linear in lag space

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="poly", 3),arglag=list(fun="1in"))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel
BIC(modelAllModel)
##Polynomial in exposure space and Polynomial in lag space

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar =

list(fun="poly",3),arglag=list(fun="poly",2))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch_Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##NS in exposure space and ~ Linear in lag space

basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="1in"))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and O5)

modelAllModel
BIC(modelAllModel)

##NS in exposure space and Poly in lag space
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basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",2))
summary(basis.MaxTem)

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.MaxTem + ns(Time, 15)
,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and OS5)

modelAllModel

BIC(modelAllModel)

##FINAL MODEL WITH BASIS VARIABLES FOR CLIMATE VARIABLES

basis.Rain <- crossbasis(RainFall, lag=3, argvar = list(fun="ns",2),arglag=list(fun="ns",2))

basis.Hum <- crossbasis(Humidity, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",degree=2))
basis.MaxTem <- crossbasis(MaxTemperature, lag=3, argvar = list(fun="ns",4),arglag=list(fun="poly",2))

modelAllModel <- glm.nb(TotalMalariaCases ~ basis.Rain + basis.MaxTem + basis.Hum + Intervention

+ ns(Time, 15) ,offset(log2(TotalPopulation)),data=Mangoch Dataset 2015 2020 U and O5)
modelAllModel

##NON LINEAR EFFECT PLOTING AND INTERPRETATION

##FIGURE 5

##lLagged effect of Rainfall

predRain <- crosspred(basis.Rain, modelAllModel,coef=NULL, vcov=NULL, at=c(0:541.4),cen = 74.5)
predRain

plot(predRain, "overall",Iwd=2,col = 4, xlab = "Rain", ylab = "RR", main = "Overall effect of rainfall")

plot(predRain, ptype="slices", type = "p", pch =19, cex = 1.5, var = 541,ci = "bars", ylab = "RR", main =

"Lag-specific effect of amount of rainfall")

plot(predRain, xlab = "Rainfall", theta = 240, phi = 40,Itheta = -185, zlab = "RR", main = "Effect of

rainfall")

plot(predRain, "contour”, plot.title = title(xlab = "rainfall",ylab = "Lag", main = "Relative risk associated

with rainfall"), key.title = title("RR"))

##FIGURE 6
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## Lagged effect of Humidity

predHum <- crosspred(basis.Hum, modelAllModel,coef=NULL, vcov=NULL, at=c(40:84),cen = 65.2)
predHum

plot(predHum, "overall",Iwd=2,col = 4, xlab = "Rain", ylab = "RR", main = "Overall effect of humidity")

plot(predHum, ptype="slices", type = "p", pch =19, cex = 1.5, var =84,ci = "bars", ylab ="RR", main =
"Lag-specific effect of humidity")

plot(predHum, xlab = "Humidity", theta = 240, phi = 40,ltheta = -185, zlab = "RR", main = "Effect of
humidity")

plot(predHum, "contour", plot.title = title(xlab = "Humidity",ylab = "Lag", main = "Relative risk
associated with humidity"), key.title = title("RR"))

##FIGURE 7
## Lagged effect of Maximum temperature

predMaxTem <- crosspred(basis.MaxTem, modelAllModel,coef=NULL, vcov=NULL, at=c(25:36),cen =
30.99)

predMaxTem

plot(predMaxTem, "overall",Iwd=2,col = 4, xlab = "Max temperature", ylab = "RR", main = "Overall

effect maximum temperature")

plot(predMaxTem, ptype="slices", type ="p", pch = 19, cex = 1.5, var = 36,ci = "bars", ylab ="RR",

main = "Lag-specific effect maximum of temperature")

plot(predMaxTem, xlab = "Maximum Temperature", theta = 240, phi = 40,Itheta = -185, zlab = "RR",

main = "Effect of maximum temperature")

plot(predMaxTem, "contour", plot.title = title(xlab = "Maximum temperature",ylab = "Lag", main =

"Relative risk associated with maximum temperature"), key.title = title("RR"))
##CHAPTER 3
## Transforming variables to zoo class

MalariaTotal1<-zoo(Mangoch Dataset 2015 2020 U and O5$MalariaTotal)
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Rainl<-zoo(Mangoch Dataset 2015 2020 U and O5$Rain)
Humidity1<-zoo(Mangoch_Dataset 2015 2020 U and O5$Humidity)
MinTempl<-zoo(Mangoch Dataset 2015 2020 U and O5$'Min Tem")
MaxTempl<-zoo(Mangoch Dataset 2015 2020 U and O5$ Max Tem")
MalariaU51<-zoo(Mangoch Dataset 2015 2020 U and O5$MalariaU5)
MalariaO51<-zoo(Mangoch Dataset 2015 2020 U and O5$MalariaO5)
Timel <-zoo(Mangoch_Dataset 2015 2020 U and O5$Time)

## extracting other variables in the data set

interventions <- interv_covariate(n = 72, tau = ¢(59), delta = ¢(1))

sinwave <- sin(2*pi/12*Mangoch_Dataset 2015 2020 U and O58$Time)
cosinwave <- cos(2*pi/12*Mangoch_Dataset 2015 2020 U and O5$Time)
PopAll<- Mangoch Dataset 2015 2020 U and OS5S$Population
PopU5<-Mangoch_Dataset 2015 2020 U _and O58U5Pop
PopO5<-Mangoch Dataset 2015 2020 U and O5$05Pop

##Table 5 and Figure 8 showing AIC , BIC and QIC for candidate models and residual plots
## Model-0 with intercept only no regressors

regressorsAll <- cbind()

response<-window(TotalMalariaCases, start=5)##trancating first 4 months to be able to use 4 month

delayed effects

dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",
xreg=NULL)

summary(dynmodel AllAges0)

coefficients(dynmodel All1Ages0)
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exp(coef(dynmodel AllIAges0))
confint(dynmodel AllAges0)
acf(residuals(dynmodel AllAges0))
## Model-1 intercept and baseline trend only
regressorsAll <- cbind(Timel)
regressors <- window(regressorsAll, start=>5)
response<-window(TotalMalariaCases, start=5)
dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c¢(1)), link = "log", distr = "nbinom",
XIeg=regressors)
summary(dynmodelAllAges0)
coefficients(dynmodel AllAges0)
exp(coef(dynmodel AllAges0))
confint(dynmodel AllAges0)
acf(residuals(dynmodel AllAges0))
## seasonal control and baseline trend
regressorsAll <- cbind(sinwave, cosinwave, Time1)

regressors <- window(regressorsAll, start=>5)##trancating first 4 months to be able to use 4 month delayed

effects
response<-window(TotalMalariaCases, start=5)
dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = ¢(1)), link = "log", distr = "nbinom",

XIeg=regressors)
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summary(dynmodelAllAges0)
coefficients(dynmodel AllAges0)
exp(coef(dynmodel AllAges0))
confint(dynmodel AllAges0)
acf(residuals(dynmodelAllAges0))
## Model seasonal control, baseline trend and intervention
regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions)
regressors <- window(regressorsAll, start=>5)
response<-window(TotalMalariaCases, start=5)
dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",
XIeg=regressors)
summary(dynmodel AllAges0)
coefficients(dynmodel AllAges0)
exp(coef(dynmodel AllAges0))
confint(dynmodel AllAges0)
acf(residuals(dynmodel AllAges0))
## Model seasonal control, baseline trend, intervention and non-lagged climate variables
regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions,Rainl,Humidity1,MaxTemp1)
regressors <- window(regressorsAll, start=>5)
response<-window(TotalMalariaCases, start=>5)
dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",

XIeg=regressors)
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summary(dynmodel AllAges0)
coefficients(dynmodel AllAges0)
exp(coef(dynmodel AllAges0))
confint(dynmodel AllAges0)
acf(residuals(dynmodelAllAges0))

## Model with baseline, intervention, seasonal control and lagged climate variables

regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2))

regressors <- window(regressorsAll, start=>5)

response<-window(TotalMalariaCases, start=>5)

dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",
XIeg=regressors)

dynmodel AllAgesO

summary(dynmodelAllAges0)

coefficients(dynmodel AllAges0)

exp(coef(dynmodel AllIAges0))

confint(dynmodel AllAges0)

acf(residuals(dynmodelAllAges0))

## PREDICTING USING MODEL-5 WITH LAGGED CLIMATE VARIABLES

## truncating variables to suit truncated anaylsis

truncatedPop <- window(Mangoch Dataset 2015 2020 U and O5$Population, start=5)

truncatedU5Pop <- window(Mangoch Dataset 2015 2020 U and O5$U5Pop, start=5)

truncatedO5Pop <- window(Mangoch_Dataset 2015 2020 U and OS5$05Pop, start=5)
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truncatedInterv <- window(Mangoch Dataset 2015 2020 U and O5$IntervPeriod, start=5)
truncatedtime <- window(Mangoch _Dataset 2015 2020 U and O5$Time, start=5)
trResponseU5 <- window(Mangoch Dataset 2015 2020 U and O5$MalariaU5, start=5)
trResponse05 <- window(Mangoch Dataset 2015 2020 U and O5$MalariaO5, start=5)
## predicted rate in all ages

regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2))
regressors <- window(regressorsAll, start=>5)
response<-window(TotalMalariaCases, start=>5)
dynmodel AllAgesO<-tsglm(response,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",
XIeg=regressors)
##Table 6 Model coefficients for lagged climate variable model-5
summary(dynmodel AllAges0)
##UNDER ALL AGES ANALYSIS

##Figure 9 Graphs showing predicted monthly incidence against counterfactual climate un

adjusted for climate factors

##Model predicted malaria cases in all ages
predAllAges<-predict.glm(dynmodel AllAges0,type = "response")
predAllAges

##predicted rate

predRateAllAges<-pred AllAges/truncatedPop

##Observation Rate

ActualRateAllAges <- response/truncatedPop

##0Obtaining counter factual estimates from the model by removing intervention effect
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predAllAgesCounter<-predAllAges/exp(-6.47¢-01*truncatedInterv) ##-6.47e-01 is coefficient for

intervention variable in the model
predRateAllA gesCounter<-pred AllAgesCounter/truncatedPop
##plotting Predicted rate and counter factual

seasonal AllCases<-plot(truncatedtime, response,main = "Actual and model predicted malaria cases", pch
=19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab = "Number of

Malaria Cases")

nmn nn

lines(truncatedtime,pred AllAgesCounter,lty="dashed", bty = "n", xlab ="", ylab ="",col="green")
lines(truncatedtime,predAllAges,type = "1", bty = "n", xlab="", ylab = "",col="blue")
abline(v=59,col="Red")

legend(3, 55000, legend=c("Predicted", "counter factual","IRS Start period"),col=c(
"blue","green","Red"), Ilty=1:2, cex=0.8)

##UNDER FIVE ANALYSIS
## transforming population into log for an offset use
logPopulation <- log(truncatedU5Pop)

regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2))
regressors <- window(regressorsAll, start=>5)
dynmodelU5<-tsglm(trResponseUS,
model = list(past_obs = c(1)), link = "log", distr = "nbinom",
Xreg=regressors)
## predicted rate
predUnder5<-predict.glm(dynmodelU5,type = "response")
predRateUnder5<-predUnder5/truncatedUS5Pop
##Model residues

##residuals.glm(dynmodelU5,type = "response')
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##0Observation Rate

ActualRateUnder5 <- trResponseU5/truncatedUSPop

##0Obtaining counter factual estimates from the model by removing intervention effect
predUnder5Counter<-predUnder5/exp(-0.7230173 *truncatedInterv)
predRateUnder5Counter<-predUnder5Counter/truncatedU5Pop

##plotting Predicted rate and counter factual

seasonal AllCases<-plot(truncatedtime, trResponseU5,main = "Actual and model predicted malaria cases
in Under 5", pch = 19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab =

"Number of Malaria Cases")

—m —nm

lines(truncatedtime,predUnder5Counter,lty="dashed", bty = "n", xlab , ylab ,col="green")
lines(truncatedtime,predUnder5,type = "I", bty = "n", xlab ="", ylab ="",col="blue")
abline(v=59,col="Red")

legend(6, 27000,legend=c("Predicted", "counter factual","IRS Start period"),col=c(
"blue","green","Red"), Ilty=1:2, cex=0.8)

##OVER FIVE ANALYSIS
## transforming population into log for an offset use
logPopulation <- log(truncatedO5Pop)

regressorsAll <- cbind(sinwave, cosinwave, Timel, interventions,lag(Rain1,0:-2),lag(Humidity1,0:-

2),lag(MaxTemp1,0:-2))
regressors <- window(regressorsAll, start=>5)
dynmodelO5<-tsglm(trResponseO5,
model = list(past_obs = ¢(1)), link = "log", distr = "nbinom",
XIreg=regressors)
## predicted rate

predOver5<-predict.glm(dynmodelO5,type = "response")
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predRateOver5<-predOver5/truncatedO5Pop

##Observation Rate

ActualRateOver5 <- trResponseO5/truncatedO5Pop

##0Obtaining counter factual estimates from the model by removing intervention effect
predOver5Counter<-predOver5/exp(-5.85e-01 *truncatedInterv)
predRateOver5Counter<-predOver5Counter/truncatedOS5Pop

##plotting Predicted rate and counter factual

seasonal AllCases<-plot(truncatedtime, trResponseO5,main = "Actual and model predicted malaria cases
in Over 5", pch =19, axes = TRUE, bty = "n", xlab = "Months between Jan 2015 to Dec 2020", ylab =

"Number of Malaria Cases")

lines(truncatedtime,predOver5Counter,lty="dashed", bty = "n", xlab ="", ylab ="",col="green")
lines(truncatedtime,predOverS5,type = "1", bty = "n", xlab ="", ylab = "",col="blue")
abline(v=59,col="Red")

legend(3, 29000, legend=c("Predicted rate", "counter factual","IRS Start
period"),col=c("blue","green","Red"), lty=1:2, cex=0.8)
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